精英家教网 > 高中数学 > 题目详情
20.若两点的坐标是A(3cosα,3sinα,1),B(2cosβ,2sinβ,1),则|AB|的取值范围是(  )
A.[0,5]B.[1,5]C.(0,5)D.[1,25]

分析 把要求的式子|AB|化为$\sqrt{13-12cos(α-β)}$,根据-1≤cos(α-β)≤1 求出|AB|的取值范围.

解答 解:由题意可得|AB|=$\sqrt{(3cosα-2cosβ)^{2}+(3sinα-2sinβ)^{2}}$=$\sqrt{13-12cos(α-β)}$,
∵-1≤cos(α-β)≤1,∴1≤13-12cos(α-β)≤25,
∴1≤$\sqrt{13-12cos(α-β)}$≤5,
故选B.

点评 本题主要考查两点间的距离公式,余弦函数的值域,同角三角函数的基本关系的应用,把要求的式子化为$\sqrt{13-12cos(α-β)}$,是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有(  )
A.10种B.32种C.25种D.16种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a>b,且a≠0,b≠0,a+b≠0,则函数y=ax+b与y=$\frac{a+b}{x}$同一坐标系中的图象一定不可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如果不等式$\sqrt{x+a}$≥x的解集在数轴上构成长度为2a的区间,则a的值为$\frac{1+\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=ax3+bx2+c的图象经过点(0,1),且在x=1处的切线方程是y=x
(1)求y=f(x)的解析式;
(2)求y=f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知a,b∈R,在(ax+$\frac{2b}{x}$)8的展开式中,第二项系数为正,各项系数和为256,则该展开式中的常数项的取值范围是(0,70].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)求函数f(x)=cos2x-sinx的最大值;
(2)求函数f(x)=cos2x-asinx的最小值.(用含a的代数式表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线y=x+b与曲线$\left\{\begin{array}{l}{x=\frac{3}{2}cosθ}\\{y=\frac{3}{2}sinθ}\end{array}\right.$(θ为参数,且-$\frac{π}{2}$≤θ≤$\frac{π}{2}$)有两个不同的交点,则实数b的取值范围是(  )
A.(-$\frac{3\sqrt{2}}{2}$,$\frac{3\sqrt{2}}{2}$)B.(-$\frac{3\sqrt{2}}{2}$,-$\frac{3}{2}$]C.(-$\sqrt{2}$,$\sqrt{2}$)D.(-$\sqrt{2}$,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.对于两个复数$α=\frac{1}{2}+\frac{{\sqrt{3}}}{2}i,β=-\frac{1}{2}-\frac{{\sqrt{3}}}{2}i$,有下列四个结论:
①αβ=1;
②$\frac{α}{β}=1$;
③$|{\frac{α}{β}}|=1$;
④α22=1
其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案