精英家教网 > 高中数学 > 题目详情
12.某学校在一次第二课堂活动中,特意设置了过关智力游戏,游戏共五关.规定第一关没过者没奖励,过n(n∈N*)关者奖励2n-1件小奖品(奖品都一样).如图是小明在10次过关游戏中过关数的条形图,以此频率估计概率.
(Ⅰ)估计小明在1次游戏中所得奖品数的期望值;
(II)估计小明在3次游戏中至少过两关的平均次数;
(Ⅲ)估计小明在3次游戏中所得奖品超过30件的概率.

分析 (Ⅰ)设小明在1次游戏中所得奖品数为ξ,根据题意写出ξ 的分布列,
计算期望值;
(Ⅱ)设小明在3次游戏中至少过两关的次数为X,则X~B(3,0.7),
计算E(X)即可;
(Ⅲ)计算小明在3次游戏中所得奖品超过30件的概率值即可.

解答 解:(Ⅰ)设小明在1次游戏中所得奖品数为ξ,则ξ 的分布列为

ξ0124816
P0.10.20.30.20.10.1
------(2分)
ξ 的期望值为E(ξ )=0×0.1+1×0.2+2×0.3+4×0.2+8×0.1+16×0.1=4;-----(4分)
(Ⅱ)小明在1次游戏中至少过两关的概率为0.7,-------(5分)
设小明在3次游戏中至少过两关的次数为X,可知X~B(3,0.7),
则X的平均次数E(X)=3×0.7=2.1;--------(7分)
(Ⅲ)小明在3次游戏中所得奖品超过30件含三类:
恰好一次ξ=16和两次ξ=8,恰好二次ξ=16,恰好三次ξ=16,------(8分)
${C}_{3}^{1}$•P(ξ=16)•P(ξ=8)2=3×0.1×0.12=0.003,-------(9分
${C}_{3}^{2}$•P(ξ=16)2•P(ξ≠16)=3×0.12×(1-0.1)=0.027,-----(10分)
${C}_{3}^{3}$•P(ξ=16)3=0.13=0.001;-------(11分)
所以小明在3次游戏中所得奖品超过30件的概率为P=0.003+0.027+0.001=0.031.------(12分)

点评 本题考查了离散型随机变量的分布列与数学期望的计算问题,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知全集U=R,$A=\left\{{x\left|{-2<x<\frac{1}{2}}\right.}\right\},B=\left\{{x\left|{x≤0}\right.}\right\},C=\left\{{x\left|{x≥\frac{1}{2}}\right.}\right\}$,则集合C=(  )
A.A∩BB.U(A∩B)C.A∪(∁UB)D.U(A∪B)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=ex-ax2-2x-1,若曲线y=f(x)在点(1,f(1))处的切线为l,且l在y轴上的截距为-2,则实数a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有(  )
A.10种B.32种C.25种D.16种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知直线3x-4y-6=0与圆x2+y2-2y+m=0(m∈R)相切,则m的值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知关于x的一元二次不等式ax2+2x+b>0的解集为{x|x≠c},则$\frac{{a}^{2}+{b}^{2}+1}{a+c}$(其中a+c≠0)的取值范围为(-∞,-2$\sqrt{3}$]∪[2$\sqrt{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.计算$\int_{-2}^2{(x+\sqrt{4-{x^2}})dx}$得2π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a>b,且a≠0,b≠0,a+b≠0,则函数y=ax+b与y=$\frac{a+b}{x}$同一坐标系中的图象一定不可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)求函数f(x)=cos2x-sinx的最大值;
(2)求函数f(x)=cos2x-asinx的最小值.(用含a的代数式表示)

查看答案和解析>>

同步练习册答案