精英家教网 > 高中数学 > 题目详情
5.若实数x,y满足$\left\{\begin{array}{l}{x+2y-4≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$,则x2+y2的最大值为(  )
A.1B.4C.6D.5

分析 作出平面区域,则x2+y2表示平面区域内的点到原点的最大距离的平方.

解答 解:作出实数x,y满足$\left\{\begin{array}{l}{x+2y-4≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$的平面区域如图:
解方程组$\left\{\begin{array}{l}{x+2y-4=0}\\{x-y-1=0}\end{array}\right.$得,∴A(2,1).
由题意可知A到原点的距离的平方最大,
∴|OA|2=22+12=5.
∴x2+y2的最大值是5.
故选:D.

点评 本题考查了简单的线性规划,弄清x2+y2的几何意义是解题关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=(x-2)lnx-ax+1.
(1)若f(x)在区间(1,+∞)上单调递增,求实数a的取值范围;
(2)若存在唯一整数x0,使得f(x0)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知i是虚数单位,$\overline z$是复数z的共轭复数,$\overline z+|z|•i=1+2i$,则z的虚部为(  )
A.$-\frac{3}{4}$B.$\frac{3}{4}$C.$-\frac{3}{4}i$D.$\frac{3}{4}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将正奇数按如图所示的规律排列,则第21行从左向右的第5个数为(  )
A.731B.809C.852D.891

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有(  )
A.10种B.32种C.25种D.16种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}中,a1=1,an+1=$\frac{2(n+1){a}_{n}}{n}$+n+1.
(I)求证:数列{$\frac{{a}_{n}}{n}$+1}是等比教列.
(II)求数列{an}的前n项和为Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知关于x的一元二次不等式ax2+2x+b>0的解集为{x|x≠c},则$\frac{{a}^{2}+{b}^{2}+1}{a+c}$(其中a+c≠0)的取值范围为(-∞,-2$\sqrt{3}$]∪[2$\sqrt{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数$f(x)=\frac{1}{2}{x^3}-a{x^2}+1$.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)方程f(x)=0有三个不同的解,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知a,b∈R,在(ax+$\frac{2b}{x}$)8的展开式中,第二项系数为正,各项系数和为256,则该展开式中的常数项的取值范围是(0,70].

查看答案和解析>>

同步练习册答案