精英家教网 > 高中数学 > 题目详情
2.如果实数x,y满足$\left\{\begin{array}{l}{2x-y≥0}\\{x+y-4≥0}\\{x≤3}\end{array}\right.$,则z=x2+y2-2x的最小值是(  )
A.3B.$\frac{7}{2}$C.4D.$\frac{9}{2}$

分析 作出不等式组对应的平面区域,利用两点间的距离公式,以及数形结合进行求解即可.

解答 解:由z=x2+y2-2x=(x-1)2+y2-1,
设m=(x-1)2+y2
则m的几何意义是区域内的点到点D(1,0)的距离的平方,
作出不等式组对应的平面区域如图:
由图象知D到AC的距离为最小值,
此时d=$\frac{|1+0-4|}{\sqrt{2}}$=$\frac{3}{\sqrt{2}}$,
则m=d2=($\frac{3}{\sqrt{2}}$)2=$\frac{9}{2}$,
则z=m-1=$\frac{9}{2}$-1=$\frac{7}{2}$,
故选:B.

点评 本题主要考查线性规划的应用,根据两点间的距离公式,结合数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.化简(1+$\sqrt{x}$)5+(1-$\sqrt{x}$)5按x升幂排列为2+20x+10x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某企业生产A、B两种产品,它们的原料中均含甲、乙两种溶液,生产每件产品所需两种溶液的剂量如下表所示:
单位:升AB
42
15
生产产品A和B每件分别获得利润2万元、3万元,现只有甲、乙两种溶液各60升,该企业有三种生产方案,方案一:只生产A.方案二:只生产B.方案三:按一定比例生产A、B实现利润最大化.
(1)方案一和方案二中哪种方案利润较高;
(2)按照方案三生产,则产品A、B各生产多少件,最大利润为多少,判断方案三是否优于方案一和方案二.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.锐角△ABC三个内角A、B、C,它们的对边分别为a、b、c,已知C=$\frac{π}{4}$,c=$\sqrt{2}$,求a2+b2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合M={x|lnx>0},N={x|x2≤4},则M∩N=(  )
A.(1,2]B.[1,2)C.(1,2)D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设数列{an}的前n项和为Sn,且a1=$\frac{1}{2}$,{Sn+nan}为常数列,则an=(  )
A.$\frac{1}{n(n+1)}$B.$\frac{1}{{2}^{n}}$C.$\frac{3}{(n+1)(n+2)}$D.$\frac{5-2n}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上存在四个不同的点A、B、C、D,使四边形ABCD为菱形,则$\frac{b}{a}$的取值范围为$\frac{b}{a}$>1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若一个球的半径与它的内接圆锥的底面半径之比为$\frac{5}{3}$,且内接圆锥的轴截面为锐角三角形,则该球的体积与它的内接圆锥的体积之比等于$\frac{500}{81}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.P是双曲线x2-y2=16左支上一点,F1、F2分别是左、右焦点,则|PF1|-|PF2|=-8.

查看答案和解析>>

同步练习册答案