精英家教网 > 高中数学 > 题目详情
10.锐角△ABC三个内角A、B、C,它们的对边分别为a、b、c,已知C=$\frac{π}{4}$,c=$\sqrt{2}$,求a2+b2的值.

分析 利用余弦定理,结合基本不等式,即可求出a2+b2的最大值.

解答 解:∵C=$\frac{π}{4}$,c=$\sqrt{2}$,
∴2=a2+b2-2abcos$\frac{π}{4}$=a2+b2-$\sqrt{2}$ab≥(1-$\frac{\sqrt{2}}{2}$)(a2+b2),
∴a2+b2≤4+2$\sqrt{2}$,
∴a2+b2的最大值为4+2$\sqrt{2}$.

点评 本题考查余弦定理、基本不等式的运用,考查学生的计算能力,正确运用余弦定理、基本不等式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow{a}$=(1,2),向量$\overrightarrow{b}$=(2,m),若$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$垂直,则实数m的值为-$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知M为△ABC内一点,$\overrightarrow{AM}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$,则△ABM和△ABC的面积之比为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知a,b∈R,i是虚数单位,若(2+i)(1-bi)=a+i,则a+b=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在钝角△ABC中,内角A,B,C所对的边分别为a,b,c,已知a=7,b=3,cosC=$\frac{11}{14}$.
(Ⅰ)求c和角A的大小;
(Ⅱ)求sin(2C-$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点和上顶点分别为A、B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,则椭圆的离心率为$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果实数x,y满足$\left\{\begin{array}{l}{2x-y≥0}\\{x+y-4≥0}\\{x≤3}\end{array}\right.$,则z=x2+y2-2x的最小值是(  )
A.3B.$\frac{7}{2}$C.4D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知椭圆$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为e,直线l:y=x+1经过椭圆C的一个焦点,点(1,1)关于直线l的对称点也在椭圆C上,则$\frac{2e}{{m}^{2}+1}$+m2的最小值为(  )
A.1B.$\sqrt{2}$C.2$\sqrt{2}$-1D.均不正确

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.植树节期间我市组织义工参加植树活动,为方便安排任务将所有义工按年龄分组:第l组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的部分频率分布表如下:
区间人数频率
第1组[25,30)500.1
第2组[30,35)500.1
第3组[35,40)a0.4
第4组[40,45)150b
(1)求a,b的值;
(2)现在要从年龄较小的第l,2,3组中用分层抽样的方法随机抽取6人担任联系人,在第l,2,3组抽取的义工的人数分别是多少?
(3)在(2)的条件下,从这6人中随机抽取2人担任本次活动的宣传员,求至少有1人年龄在第3组的概率.

查看答案和解析>>

同步练习册答案