分析 由题意可求得AB的方程,设出P点坐标,代入AB得方程,由PF1⊥PF2,得$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}$=0,结合椭圆的离心率的性质即可求得答案.
解答
解:依题意,作图如下
∵A(-a,0),B(0,b),F1(-c,0),F2(c,0),
∴直线AB的方程为:$\frac{x}{-a}$+$\frac{y}{b}$=1,整理得:bx-ay+ab=0,
设直线AB上的点P(x,y)
则bx=ay-ab,
∴x=$\frac{a}{b}$y-a,
∵PF1⊥PF2,
∴$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}$=(-c-x,-y)•(c-x,-y)=x2+y2-c2
=($\frac{a}{b}y-a$)2+y2-c2,
令f(y)=($\frac{a}{b}y-a$)2+y2-c2,
则f′(y)=2($\frac{a}{b}$y-a)×${\;}^{\frac{a}{b}}$+2y,
∴由f′(y)=0得:y=$\frac{{a}^{2}b}{{a}^{2}+{b}^{2}}$,于是x=-$\frac{a{b}^{2}}{{a}^{2}+{b}^{2}}$,
∴$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}$=($\frac{-a{b}^{2}}{{a}^{2}+{b}^{2}}$)2+($\frac{{a}^{2}b}{{a}^{2}+{b}^{2}}$)2-c2=0,
整理得:$\frac{{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$=c2,又b2=a2-c2,e2=$\frac{{c}^{2}}{{a}^{2}}$,
∴e4-3e2+1=0,
∴e2=$\frac{3±\sqrt{5}}{2}$,又椭圆的离心率e∈(0,1),
∴e2=$\frac{3-\sqrt{5}}{2}$=($\frac{\sqrt{5}-1}{2}$)2,
∴椭圆的离心率为e=$\frac{\sqrt{5}-1}{2}$.
故答案为:$\frac{\sqrt{5}-1}{2}$.
点评 本题考查椭圆的性质,考查向量的数量积,考查直线的方程,着重考查椭圆性质的应用,是重点更是难点,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 120 | B. | 240 | C. | 360 | D. | 480 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{n(n+1)}$ | B. | $\frac{1}{{2}^{n}}$ | C. | $\frac{3}{(n+1)(n+2)}$ | D. | $\frac{5-2n}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com