精英家教网 > 高中数学 > 题目详情
5.已知{an}为等差数列,3a4+a8=36,则{an}的前9项和S9=(  )
A.9B.17C.36D.81

分析 由等差数列性质得到a1+4d=a5=9,由此能求出{an}的前9项和.

解答 解:∵{an}为等差数列,3a4+a8=36,
∴3(a1+3d)+a1+7d=4a1+16d=36,
解得a1+4d=a5=9,
∴S9=$\frac{9}{2}$×(a1+a9)=9a5=9×9=81.
故选:D.

点评 本题考查等差数列的前9项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.将53化为二进制的数,结果为(  )
A.10101(2)B.101011(2)C.110011(2)D.110101(2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.曲线y=a$\sqrt{x}$(a>0)与曲线y=ln$\sqrt{x}$有公共点,且在公共点处的切线相同,则a的值为(  )
A.eB.e2C.e-2D.e-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.一名顾客计划到某商场购物,他有三张商场的优惠劵,商场规定每购买一件商品只能使用一张优惠券.根据购买商品的标价,三张优惠券的优惠方式不同,具体如下:
优惠劵A:若商品标价超过50元,则付款时减免标价的10%;
优惠劵B:若商品标价超过100元,则付款时减免20元;
优惠劵C:若商品标价超过100元,则付款时减免超过100元部分的18%.
某顾客想购买一件标价为150元的商品,若想减免钱款最多,则应该使用B优惠劵(填A,B,C);若顾客想使用优惠券C,并希望比优惠券A和B减免的钱款都多,则他购买的商品的标价应高于225元.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow{a}$=(1,2),向量$\overrightarrow{b}$=(2,m),若$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$垂直,则实数m的值为-$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知F1、F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,若在双曲线的右支上存在一点M,使得($\overrightarrow{OM}$+$\overrightarrow{O{F}_{2}}$)•$\overrightarrow{{F}_{2}M}$=0(其中O为坐标原点),且|$\overrightarrow{M{F}_{1}}$|=$\sqrt{3}$|$\overrightarrow{M{F}_{2}}$|,则双曲线离心率为$\sqrt{3}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=$\frac{{\sqrt{4-{x^2}}}}{{{{log}_2}x-1}}$的定义域为(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数z满足z=$\frac{5}{2-i}$,则|z|=(  )
A.2B.$\sqrt{5}$C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点和上顶点分别为A、B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,则椭圆的离心率为$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

同步练习册答案