分析 根据向量关系求出F1M⊥MF2,结合双曲线的定义以及直角三角形的边角关系建立方程关系进行求解即可.
解答
解:设C是MF2的中点,
∵($\overrightarrow{OM}$+$\overrightarrow{O{F}_{2}}$)•$\overrightarrow{{F}_{2}M}$=0
∴2$\overrightarrow{OC}$•$\overrightarrow{{F}_{2}M}$=0
即OC⊥MF2,
即OM=OF2
∵OC∥F1M,
∴F1M⊥MF2,
∵|$\overrightarrow{M{F}_{1}}$|=$\sqrt{3}$|$\overrightarrow{M{F}_{2}}$|,
∴|$\overrightarrow{M{F}_{1}}$|-|$\overrightarrow{M{F}_{2}}$|=$\sqrt{3}$|$\overrightarrow{M{F}_{2}}$|-|$\overrightarrow{M{F}_{2}}$|=2a
则|$\overrightarrow{M{F}_{2}}$|=$\frac{2a}{\sqrt{3}-1}$=($\sqrt{3}$+1)a,
|$\overrightarrow{M{F}_{1}}$|=$\sqrt{3}$|$\overrightarrow{M{F}_{2}}$|=$\sqrt{3}$($\sqrt{3}$+1)a,
∵|$\overrightarrow{M{F}_{1}}$|2+|$\overrightarrow{M{F}_{2}}$|2=4c2,
∴4($\sqrt{3}$+1)2a2=4c2,
即($\sqrt{3}$+1)2a2=c2,
即($\sqrt{3}$+1)a=c,
则离心率e=$\frac{c}{a}$=$\sqrt{3}$+1,
故答案为:$\sqrt{3}$+1
点评 本题主要考查双曲线离心率的计算,根据向量关系判断F1M⊥MF2,是解决本题的关键.综合性较强,有一定的难度.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$<α≤$\frac{5π}{6}$ | B. | $\frac{π}{3}$<α<π | C. | $\frac{π}{3}$≤α<π | D. | $\frac{π}{3}$<α≤$\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=$\sqrt{x}$ | B. | y=-x3 | C. | y=${log_{\frac{1}{2}}}$x | D. | y=x+$\frac{1}{x}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 120 | B. | 240 | C. | 360 | D. | 480 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com