| A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 4 |
分析 可知点P(a,b)是曲线f(x)=x2-lnx(x>0)上的点,Q(c,d)是直线y=x-2上的点,由导数的几何意义可知,过曲线y=x2-lnx上的点P(a,b)的切线且与线y=x-2平行时,|PQ|有最小值,运用点到直线的距离公式,计算即可得到所求.
解答 解:设点P(a,b)是曲线f(x)=x2-lnx(x>0)上的点,Q(c,d)是直线y=x-2上的点,
∴|PQ|2=(a-c)2+(b-d)2,
要使(a-c)2+(b-d)2最小,当且仅当过曲线y=x2-lnx上的点P(a,b)的切线且与y=x-2平行时.
f′(x)=$\frac{2{x}^{2}-1}{x}$(x>0),
由$\frac{2{x}^{2}-1}{x}$=1,可得x=1(负值舍去),
∴点P(1,1)到直线y=x-2的距离为d=$\frac{|1-1-2|}{\sqrt{2}}$=$\sqrt{2}$,
∵|PQ|≥d=$\sqrt{2}$,则(a-c)2+(b-d)2的最小值为2.
故选:C.
点评 本题考查函数最值的求法,运用两点的距离公式是关键,也是难点,考查理解题意与等价转化思想的综合应用,考查导数的几何意义及点到直线间的距离,属于难题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | e | B. | e2 | C. | e-2 | D. | e-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com