精英家教网 > 高中数学 > 题目详情
1.若实数a,b,c,d满足a2-lna=b,d=c-2,则(a-c)2+(b-d)2的最小值为(  )
A.1B.$\sqrt{2}$C.2D.4

分析 可知点P(a,b)是曲线f(x)=x2-lnx(x>0)上的点,Q(c,d)是直线y=x-2上的点,由导数的几何意义可知,过曲线y=x2-lnx上的点P(a,b)的切线且与线y=x-2平行时,|PQ|有最小值,运用点到直线的距离公式,计算即可得到所求.

解答 解:设点P(a,b)是曲线f(x)=x2-lnx(x>0)上的点,Q(c,d)是直线y=x-2上的点,
∴|PQ|2=(a-c)2+(b-d)2
要使(a-c)2+(b-d)2最小,当且仅当过曲线y=x2-lnx上的点P(a,b)的切线且与y=x-2平行时.
f′(x)=$\frac{2{x}^{2}-1}{x}$(x>0),
由$\frac{2{x}^{2}-1}{x}$=1,可得x=1(负值舍去),
∴点P(1,1)到直线y=x-2的距离为d=$\frac{|1-1-2|}{\sqrt{2}}$=$\sqrt{2}$,
∵|PQ|≥d=$\sqrt{2}$,则(a-c)2+(b-d)2的最小值为2.
故选:C.

点评 本题考查函数最值的求法,运用两点的距离公式是关键,也是难点,考查理解题意与等价转化思想的综合应用,考查导数的几何意义及点到直线间的距离,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知tan($\frac{π}{6}$-α)=$\sqrt{2}$,则tan($\frac{5}{6}$π+α)=-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若直线y=kx+2是函数f(x)=x3-x2-3x-1的图象的一条切线,则k=(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.曲线f(x)=2x2-3x在点(1,f(1))处的切线方程为x-y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.曲线y=a$\sqrt{x}$(a>0)与曲线y=ln$\sqrt{x}$有公共点,且在公共点处的切线相同,则a的值为(  )
A.eB.e2C.e-2D.e-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知实数x,y满足xy-3=x+y,且x>1,则y(x+8)的最小值是(  )
A.33B.26C.25D.21

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.一名顾客计划到某商场购物,他有三张商场的优惠劵,商场规定每购买一件商品只能使用一张优惠券.根据购买商品的标价,三张优惠券的优惠方式不同,具体如下:
优惠劵A:若商品标价超过50元,则付款时减免标价的10%;
优惠劵B:若商品标价超过100元,则付款时减免20元;
优惠劵C:若商品标价超过100元,则付款时减免超过100元部分的18%.
某顾客想购买一件标价为150元的商品,若想减免钱款最多,则应该使用B优惠劵(填A,B,C);若顾客想使用优惠券C,并希望比优惠券A和B减免的钱款都多,则他购买的商品的标价应高于225元.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知F1、F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,若在双曲线的右支上存在一点M,使得($\overrightarrow{OM}$+$\overrightarrow{O{F}_{2}}$)•$\overrightarrow{{F}_{2}M}$=0(其中O为坐标原点),且|$\overrightarrow{M{F}_{1}}$|=$\sqrt{3}$|$\overrightarrow{M{F}_{2}}$|,则双曲线离心率为$\sqrt{3}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,圆锥形容器的高为h,圆锥内水面的高为h1,且$\frac{h_1}{h}$=$\frac{1}{3}$,若将圆锥倒置,水面高为h2,则$\frac{h_2}{h}$等于$\frac{\root{3}{19}}{3}$.

查看答案和解析>>

同步练习册答案