精英家教网 > 高中数学 > 题目详情
3.已知i是虚数单位,则(2+i)(1-3i)=5-5i.

分析 直接由复数代数形式的乘法运算化简得答案.

解答 解:(2+i)(1-3i)=2-6i+i-3i2=5-5i,
故答案为:5-5i.

点评 本题考查了复数代数形式的乘法运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.一名顾客计划到某商场购物,他有三张商场的优惠劵,商场规定每购买一件商品只能使用一张优惠券.根据购买商品的标价,三张优惠券的优惠方式不同,具体如下:
优惠劵A:若商品标价超过50元,则付款时减免标价的10%;
优惠劵B:若商品标价超过100元,则付款时减免20元;
优惠劵C:若商品标价超过100元,则付款时减免超过100元部分的18%.
某顾客想购买一件标价为150元的商品,若想减免钱款最多,则应该使用B优惠劵(填A,B,C);若顾客想使用优惠券C,并希望比优惠券A和B减免的钱款都多,则他购买的商品的标价应高于225元.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数z满足z=$\frac{5}{2-i}$,则|z|=(  )
A.2B.$\sqrt{5}$C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,圆锥形容器的高为h,圆锥内水面的高为h1,且$\frac{h_1}{h}$=$\frac{1}{3}$,若将圆锥倒置,水面高为h2,则$\frac{h_2}{h}$等于$\frac{\root{3}{19}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知a,b∈R,i是虚数单位,若(2+i)(1-bi)=a+i,则a+b=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}是等差数列,公差d>0,a1=2,其前n项为Sn(n∈N*).且a1,a4,S5+2成等比数列.
(Ⅰ)求数列{an}的通项an及前n项和Sn
(Ⅱ)若anbn=4,数列{bnbn+2}的前n项和为Tn,证明:对n∈N*,$\frac{4}{3}≤{T_n}$<3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点和上顶点分别为A、B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,则椭圆的离心率为$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点分别为F1(-$\sqrt{2}$,0),F2($\sqrt{2}$,0),以椭圆短轴为直径的圆经过点M(1,0).
(1)求椭圆C的方程;
(2)过点M的直线l与椭圆C相交于A、B两点,设点N(3,2),记直线AN,BN的斜率分别为k1,k2,问:k1+k2是否为定值?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.α,β,γ为不同的平面,a,b,c为三条不同的直线,则下列命题正确的是(  )
A.若α⊥γ,β⊥γ,则α∥βB.若a∥β,a∥b,则b∥β
C.若a∥α,b∥α,c⊥a,c⊥b,则c⊥αD.若a⊥γ,b⊥γ,则a∥b

查看答案和解析>>

同步练习册答案