精英家教网 > 高中数学 > 题目详情
14.已知抛物线E:y2=2px(p>0)的焦点为F,过F且垂直于x轴的直线与抛物线E交于A,B两点,E的准线与x轴交于点C,△CAB的面积为4,以点D(3,0)为圆心的圆D过点A,B.
(Ⅰ)求抛物线E和圆D的方程;
(Ⅱ)若斜率为k(|k|≥1)的直线m与圆D相切,且与抛物线E交于M,N两点,求$\overrightarrow{FM}•\overrightarrow{FN}$的取值范围.

分析 (Ⅰ)利用,△CAB的面积为4,以点D(3,0)为圆心的圆D过点A,B,即可求抛物线E和圆D的方程;
(Ⅱ)设直线m:y=kx+b(|k|≥1),则$\frac{|3k+b|}{\sqrt{{k}^{2}+1}}$=2$\sqrt{2}$,即k2+6kb+b2=8,联立y=kx+b与抛物线,利用韦达定理及向量数量积公式,即可得出结论.

解答 解:(Ⅰ)由题意,$F(\frac{p}{2},0),A(\frac{p}{2},p),B(\frac{p}{2},-p),C(-\frac{p}{2},0),{S_{△ABC}}={p^2}$,(1分)
由p2=4得p=2,圆D半径R=2$\sqrt{2}$,(3分)
所以抛物线E:y2=4x,圆(x-3)2+y2=8.(4分)
(Ⅱ)设直线m:y=kx+b(|k|≥1),
则$\frac{|3k+b|}{\sqrt{{k}^{2}+1}}$=2$\sqrt{2}$,即k2+6kb+b2=8,①
联立y=kx+b与抛物线得ky2-4y+4b=0,△=16-16kb,(5分)
由①知kb≤1,即△≥0(6分)
所以方程ky2-4y+4b=0有两个实数根y1,y2,且y1+y2=$\frac{4}{k}$,y1y2=$\frac{4b}{k}$(7分)
$\overrightarrow{FM}•\overrightarrow{FN}$=$\frac{1}{16}$[(y1y22-4(y1+y22+24y1y2+16]=$\frac{{b}^{2}+6kb{+}^{2}-4}{{k}^{2}}$=$\frac{4}{{k}^{2}}$(11分)
因为|k|≥1,所以$\overrightarrow{FM}•\overrightarrow{FN}$的取值范围是(0,4].(12分)

点评 本题考查抛物线与圆的方程,考查直线与抛物线的位置关系,考查韦达定理、向量知识的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.函数y=αx-2-1(α>0且α≠1)的图象恒过的点的坐标是(2,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合 A={x|x2-x-2>0},B={x|1≤x≤3},则 A∩B=(  )
A.[1,3]B.(1,3]C.[2,3]D.(2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数$f(x)=sin(ωx+φ)(ω>0,|φ|<\frac{π}{2})$的最小正周期为π,f(x)的图象向左平移$\frac{π}{3}$个单位后关于直线x=0对称,则$f(x+\frac{π}{12})+f(x-\frac{π}{6})$的单调递增区间为(  )
A.[kπ-$\frac{11π}{24}$,kπ+$\frac{π}{24}$](k∈Z)B.$[kπ+\frac{3π}{8},kπ+\frac{7π}{8}](k∈Z)$
C.$[2kπ-\frac{π}{4},2kπ+\frac{3π}{4}](k∈Z)$D.$[2kπ+\frac{3π}{4},2kπ+\frac{7π}{4}](k∈Z)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设数列{an}的各项都是正数,且对任意n∈N*,都有an2=2Sn-an,其中Sn为数列{an}的前n项和.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=2n+λ•3${\;}^{{a}_{n}}$(n∈N*),若使得对任意n∈N*,都有bn+1<bn成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知全集U=R,集合A={x|x2+x-6>0},B={y|y=2x-1,x≤2},则(∁UA)∩B=(  )
A.[-3,3]B.[-1,2]C.[-3,2]D.(-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点分别为F1(-c,0),F2(c,0),以线段F1F2为直径的圆与双曲线在第二象限的交点为P,若直线PF2与圆E:(x-$\frac{c}{2}$)2+y2=$\frac{{b}^{2}}{16}$相切,则双曲线的渐近线方程是(  )
A.y=±xB.y=±2xC.y=±$\sqrt{3}$xD.y=±$\sqrt{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.水是地球上宝贵的资源,由于价格比较便宜在很多不缺水的城市居民经常无节制的使用水资源造成严重的资源浪费.某市政府为了提倡低碳环保的生活理念鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),[1,1.5),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.
(1)若全市居民中月均用水量不低于3吨的人数为3.6万,试估计全市有多少居民?并说明理由;
(2)若该市政府拟采取分层抽样的方法在用水量吨数为[1,1.5)和[1.5,2)之间选取7户居民作为议价水费价格听证会的代表,并决定会后从这7户家庭中按抽签方式选出4户颁发“低碳环保家庭”奖,设X为用水量吨数在[1,1.5)中的获奖的家庭数,Y为用水量吨数在[1.5,2)中的获奖家庭数,记随机变量Z=|X-Y|,求Z的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某几何体的三视图如图所示,则该几何体的体积为$\frac{5\sqrt{3}}{2}$.

查看答案和解析>>

同步练习册答案