精英家教网 > 高中数学 > 题目详情

【题目】年初的时候,国家政府工作报告明确提出, 年要坚决打好蓝天保卫战,加快解决燃煤污染问题,全面实施散煤综合治理.实施煤改电工程后,某县城的近六个月的月用煤量逐渐减少, 月至月的用煤量如下表所示:

月份

用煤量(千吨)

(1)由于某些原因, 中一个数据丢失,但根据月份的数据得出样本平均值是,求出丢失的数据;

(2)请根据月份的数据,求出关于的线性回归方程

(3)现在用(2)中得到的线性回归方程中得到的估计数据与月的实际数据的误差来判断该地区的改造项目是否达到预期,若误差均不超过,则认为该地区的改造已经达到预期,否则认为改造未达预期,请判断该地区的煤改电项目是否达预期?

(参考公式:线性回归方程,其中

【答案】(1)4(2)(3)该地区的煤改电项目已经达到预期

【解析】试题分析:(1)根据平均数计算公式得,解得丢失的数据;(2)根据公式求,再根据;(3)根据线性回归方程求估计数据,并与实际数据比较误差,确定结论.

试题解析:解:(1)设丢失的数据为,则

,即丢失的数据是.

(2)由数据求得

由公式求得

所以关于的线性回归方程为

(3)当时,

同样,当时,

所以,该地区的煤改电项目已经达到预期

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别为△ABC三个内角A,B,C的对边,ccosA+ csinA﹣b﹣a=0.
(Ⅰ)求C;
(Ⅱ)若c=1,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心为,且截轴所得的弦长为.

(1)求圆的方程;

(2)设圆轴正半轴的交点为,过分别作斜率为的两条直线交圆两点,且,试证明直线恒过一定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】利民中学为了了解该校高一年级学生的数学成绩,从高一年级期中考试成绩中抽出100名学生的成绩,由成绩得到如下的频率分布直方图.

根据以上频率分布直方图,回答下列问题:

(1)求这100名学生成绩的及格率;(大于等于60分为及格)

(2)试比较这100名学生的平均成绩和中位数的大小.(精确到0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点A(﹣1,2)为圆心的圆与直线m:x+2y+7=0相切,过点B(﹣2,0)的动直线l与圆A相交于M、N两点
(1)求圆A的方程.
(2)当|MN|=2 时,求直线l方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,且,若时,有成立.

(Ⅰ)判断上的单调性,并证明;

(Ⅱ)解不等式

(Ⅲ)若对所有的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:x﹣2y+2m﹣2=0.
(1)求过点(2,3)且与直线l垂直的直线的方程;
(2)若直线l与两坐标轴所围成的三角形的面积大于4,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0),上的点M(1,m)到其焦点F的距离为2,
(Ⅰ)求C的方程;并求其准线方程;
(II)已知A (1,﹣2),是否存在平行于OA(O为坐标原点)的直线L,使得直线L与抛物线C有公共点,且直线OA与L的距离等于 ?若存在,求直线L的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】供电部门对某社区位居民2017年12月份人均用电情况进行统计后,按人均用电量分为五组,整理得到如下的频率分布直方图,则下列说法错误的是

A. 月份人均用电量人数最多的一组有

B. 月份人均用电量不低于度的有

C. 月份人均用电量为

D. 在这位居民中任选位协助收费,选到的居民用电量在一组的概率为

查看答案和解析>>

同步练习册答案