精英家教网 > 高中数学 > 题目详情
已知当a<0时,
2
a
≥-1,
1
a
≤1,则a的取值范围是
 
考点:不等式的基本性质
专题:不等式的解法及应用
分析:利用不等式的性质即可得出.
解答: 解:∵a<0,
2
a
≥-1,
1
a
≤1,
∴-a≥2,
解得a≤-2.
∴a的取值范围是(-∞,-2].
故答案为:(-∞,-2].
点评:本题考查了不等式的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0,b>0,a+b=1,求证:
(Ⅰ)
1
a
+
1
b
+
1
ab
≥8;
(Ⅱ)(1+
1
a
)(1+
1
b
)≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:

(用数学归纳法证明)当n>1,n∈N时,求证:
1
n+1
+
1
n+2
+
1
n+3
+…+
1
3n
9
10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
-
1
x+1

(Ⅰ)写出f(x)的定义域并证明它在其定义域内是增函数;
(Ⅱ)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点A(2,4)且与圆(x-1)2+y2=1相切的直线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列
1
1
1
2
2
1
1
3
2
2
3
1
,…
1
k
2
k-1
k
1
…这个数列第2010项的值是
 
;这个数列中,第2010个值为1的项的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平行六面体ABCD-A1B1C1D1,AC1与平面A1BD,CB1D1交于E,F两点.给出以下命题,其中真命题有
 
(写出所有正确命题的序号)
①点E,F为线段AC1的两个三等分点;
ED1
=-
2
3
DC
+
1
3
AD
+
1
3
AA1

③设A1D1中点为M,CD的中点为N,则直线MN与面A1DB有一个交点;
④E为△A1BD的内心;
⑤设K为△B1CD1的外心,则
VK-BED
VA1-BFD
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2分别是椭圆的左、右焦点,与直线y=b相切的⊙F2交椭圆于点E,且点E是直线EF1与⊙F2的切点,则椭圆的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x3-3x+2在x∈[0,2]的最小值为(  )
A、-1B、0C、2D、4

查看答案和解析>>

同步练习册答案