精英家教网 > 高中数学 > 题目详情
函数f(x)=x3-3x+2在x∈[0,2]的最小值为(  )
A、-1B、0C、2D、4
考点:利用导数求闭区间上函数的最值
专题:计算题,导数的概念及应用
分析:求出导数,由导数可得函数极值,进而可判断即为函数最值.
解答: 解:∵f(x)=x3-3x+2,
∴f'(x)=3x2-3=3(x+1)(x-1),
当0≤x<1时,f'(x)<0,f(x)单调递减;
当1<x≤2时,f'(x)>0,f(x)单调递增;
∴当x=1时f(x)取得极小值,也为最小值,f(1)=1-3+2=0,
∴f(x)在[0,2]上的最小值为0,
故选:B.
点评:本题考查利用导数求函数的最值问题,属中档题,连续函数在闭区间上的最值,要么在极值处取得,要么在区间端点处取得.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知当a<0时,
2
a
≥-1,
1
a
≤1,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=2x+1被圆x2+y2=1截得的弦长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三个集合E={x|x=m+
1
6
,m∈Z},F={x|x=
n
2
-
1
3
,n∈Z},G={x|x=
p
2
+
1
6
,p∈Z},则(  )
A、E=F?G
B、E?F=G
C、E⊆F?G
D、E?F?G

查看答案和解析>>

科目:高中数学 来源: 题型:

在(1-x)3(1+x)8的展开式中,含x2项的系数是n,若(8-nx)n=a0+a1x+a2x2+…+anxn,则a1+a2+…+an=(  )
A、1
B、-1
C、1-87
D、-1+87

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是圆锥SO(O为底面中心)的侧面展开图,B,C,D是其侧面展开图中弧
AA′
的四等分点,则在圆锥SO中,下列说法错误的是(  )
A、∠SAB是直线SA与CD所成的角
B、∠SAC是直线SA与平面ABCD所成的角
C、平面SAC⊥平面SBD
D、∠SAD是二面角S-AB-D的平面角

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”;
②“x=-1”是“x2-5x-6=0的必要不充分条件;
③命题“存在x∈R,x2+x-1<0”的否定是“对任意x∈R,x2+x-1>0”;
④命题“若x=y,则sinx=siny”的逆否命题为真命题.
其中真命题的个数是(  )
A、4个B、3个C、2个D、1个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(lga+2)x+lgb满足f(-1)=-2且对于任意x∈R,恒有f(x)≥2x成立.
(1)求实数a,b的值;
(2)不等式f(x)≥a2-4a-15恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)=ax-(k+1)a-x(a>0且a≠1)的定义域为R.
(1)求实数k的值;
(2)若f(1)=1,令g(x)=a2x+a-2x-2mf(x),求实数m的取值范围,使得g(x)>0在[1,+∞)恒成立.

查看答案和解析>>

同步练习册答案