精英家教网 > 高中数学 > 题目详情
在(1-x)3(1+x)8的展开式中,含x2项的系数是n,若(8-nx)n=a0+a1x+a2x2+…+anxn,则a1+a2+…+an=(  )
A、1
B、-1
C、1-87
D、-1+87
考点:二项式系数的性质
专题:二项式定理
分析:由已知条件求得n=7,可得(8-nx)n=a0+a1x+a2x2+…+anxn=(8-7x)7,令x=0求得 a0,再令x=1可得a0+a1+a2+…+an=1,从而求得a1+a2+…+an的值.
解答: 解:∵(1-x)3(1+x)8=[1+
C
1
3
(-x)+
C
2
3
•(-x)2+
C
3
3
•(-x)3]•[
C
0
8
•x0
+
C
1
8
•x1
+…+
C
8
8
•x8
],
∴含x2项的系数是n=
C
2
8
+
C
1
3
•(-1)•
C
1
8
+
C
2
3
=7.
(8-nx)n=a0+a1x+a2x2+…+anxn=(8-7x)7
令x=0可得 a0=87
再令x=1可得a0+a1+a2+…+an=1,∴a1+a2+…+an=1-87
故选:C.
点评:本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过点A(2,4)且与圆(x-1)2+y2=1相切的直线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

当x=
 
时,函数f(x)=|x-1|+|x-2|+|x-3|有最小值,最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列选项中,说法正确的是(  )
A、“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”
B、若向量
a
b
满足
a
b
<0,则
a
b
的夹角为钝角
C、若am2≤bm2,则a≤b
D、命题“p∨q为真”是命题“p∧q为真”的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:

下列判断正确的是(  )
A、棱柱中只能有两个面可以互相平行
B、底面是正方形的直四棱柱是正四棱柱
C、底面是正六边形的棱台是正六棱台
D、底面是正方形的四棱锥是正四棱锥

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x3-3x+2在x∈[0,2]的最小值为(  )
A、-1B、0C、2D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,在区间(0,+∞)上是增函数的是(  )
A、y=-2x+3
B、y=
-2
x-1
C、y=-x2
D、y=x2-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函f(x)=ex•(cosx-sinx),将满足f′(x)=0的所有正数x从小到大排成数列{xn},记an=f(xn)(n∈N*),bn=ln|an|.
(1)证明数列{an}为等比数列; 
(2)求数列{bn}的前n项的和;
(3)若cn=2n-1•bn,求数列{cn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lg(
4x2+b
+2x)
,其中b是常数.
(1)若y=f(x)是奇函数,求b的值;
(2)求证:y=f(x)的图象上不存在两点A、B,使得直线AB平行于x轴.

查看答案和解析>>

同步练习册答案