精英家教网 > 高中数学 > 题目详情
已知函f(x)=ex•(cosx-sinx),将满足f′(x)=0的所有正数x从小到大排成数列{xn},记an=f(xn)(n∈N*),bn=ln|an|.
(1)证明数列{an}为等比数列; 
(2)求数列{bn}的前n项的和;
(3)若cn=2n-1•bn,求数列{cn}的前n项的和.
考点:数列的求和,等比关系的确定
专题:等差数列与等比数列
分析:(1)由已知条件,推导出由f′(x)=-2sinx=0,得xn=nπ,n=1,2,3,…从而推导出an=(-1)n•e,n=1,2,3,由此能够证明{an}是等比数列.
(2)由(1)知an=(-e),由此推导出{bn}是以π为首项,π为公差等差数列,从而能求出数列{bn}的前n项的和.
(3)由bn=nπ,得到cn=2n-1•bn=n•2n-1•π,由此利用错位相减法能求出数列{cn}的前n项的和.
解答: (1)证明:∵f(x)=ex•(cosx-sinx),
∴f′(x)=ex(cosx-sinx)+ex(-sinx-cosx)=-2exsinx,…(1分)
令f′(x)=0,得f′(x)=-2sinx=0,
解得x=kπ,k∈Z,
∴xn=nπ,n=1,2,3,…
an=f(xn)=e•(cosnπ-sinnπ)=(-1)n•e,n=1,2,3,…(4分)
an+1
an
=
(-1)n+1e(n+1)π
(-1)ne
=-eπ,且a1=-eπ
∴{an}是以-eπ为首项,以-eπ为公比的等比数列.…(5分)
(2)解:由(1)知an=-eπ(-eπn-1=(-e)
∴bn=ln|an|=nπ,
∴{bn}是以π为首项,π为公差等差数列,…(8分)
∴数列{bn}的前n项的和:
b1+b2+…+bn
=π+2π+…+nπ
=nπ+
n(n-1)
2
π

=
n(n+1)
2
π
.…(10分)
(3)解:∵bn=nπ,
∴cn=2n-1•bn=n•2n-1•π,
记数列{2n-1•bn}的前n项的和为Sn
Sn=π+2•2π+3•22π+…+(n-1)•2n-2π+n•2n-1π,…(11分)
2Sn=2π+2•22π+3•23π+…+(n-1)•2n-1π+n•2nπ,
两式相减得-Sn=π+2π+22π+…+2n-1π-n•2nπ
=
π(1-2n)
1-2
-n•2nπ
,…(13分)
∴数列{cn}的前n项的和Sn=(n•2n-2n+1)π.…(14分)
点评:本题考查等比数列的证明,考查数列的前n项和的求法,涉及到函数、导数、数列等知识点,综合性强,难度大,解题时要注意错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(x+2)(2x+3)10=a0+a1(x+2)+a2(x+2)2+…+a11(x+2)11,则a1+a3+a5+a7+a9+a11=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在(1-x)3(1+x)8的展开式中,含x2项的系数是n,若(8-nx)n=a0+a1x+a2x2+…+anxn,则a1+a2+…+an=(  )
A、1
B、-1
C、1-87
D、-1+87

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”;
②“x=-1”是“x2-5x-6=0的必要不充分条件;
③命题“存在x∈R,x2+x-1<0”的否定是“对任意x∈R,x2+x-1>0”;
④命题“若x=y,则sinx=siny”的逆否命题为真命题.
其中真命题的个数是(  )
A、4个B、3个C、2个D、1个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A,B,C,A={直线},B={平面},C=A∪B,若a∈A,b∈B,c∈C,给出下列命题:
a∥b
c∥b
⇒a∥c

a⊥b
c⊥b
⇒a∥c

a⊥b
c∥b
⇒a⊥c

其中正确的命题的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(lga+2)x+lgb满足f(-1)=-2且对于任意x∈R,恒有f(x)≥2x成立.
(1)求实数a,b的值;
(2)不等式f(x)≥a2-4a-15恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a•f1(x)+b•f2(x),那么称h(x)为f1(x),f2(x)的生成函数.
(1)下面给出两组函数,h(x)是否分别为f1(x),f2(x)的生成函数?并说明理由;
    第一组:f1(x)=x+1,f2(x)=2x,h(x)=5x+1;
    第二组:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1;
(2)设f1(x)=2x,f2(x)=(
1
2
x,a=1,b=-1,生成函数h(x).若不等式3h2(x)+2h(x)+t<0在x∈[1,2]上有解,求实数t的取值范围;
(3)设f1(x)=x,f2(x)=
1
x
(1≤x≤10),取a=1,b>0,生成函数h(x)使h(x)≥b恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

当m取何值时,对?x总有(m2+4m-5)x2-2(m-1)x+3>0成立?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx;
(Ⅰ)函数g(x)=-ax+f(x)在区间[1,e2]上不单调,求a的取值范围;
(Ⅱ)若k∈Z,且f(x)+x-k(x-1)>0对任意x>1恒成立,求k的最大值.

查看答案和解析>>

同步练习册答案