精英家教网 > 高中数学 > 题目详情
当m取何值时,对?x总有(m2+4m-5)x2-2(m-1)x+3>0成立?
考点:全称命题
专题:分类讨论,函数的性质及应用
分析:根据不等式恒成立的条件解不等式即可得到结论.
解答: 解:若m2+4m-5=0,则m=1或m=-5.
当m=1,不等式等价为3>0,满足条件.
当m=-5,不等式等价为12x+3>0,即x>-
1
4
,不满足条件.
若m2+4m-5≠0,要使(m2+4m-5)x2-2(m-1)x+3>0成立,
m2+4m-5>0
△=4(m-1)2-12(m2+4m-5)<0

m>1或m<-5
m2+7m-8<0

m>1或m<-5
-8<m<1

∴-8<m<-5.
综上-8<m<-5或m=1.
点评:本题主要考查不等式恒成立,注意要对参数进行分类讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列选项中,说法正确的是(  )
A、“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”
B、若向量
a
b
满足
a
b
<0,则
a
b
的夹角为钝角
C、若am2≤bm2,则a≤b
D、命题“p∨q为真”是命题“p∧q为真”的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函f(x)=ex•(cosx-sinx),将满足f′(x)=0的所有正数x从小到大排成数列{xn},记an=f(xn)(n∈N*),bn=ln|an|.
(1)证明数列{an}为等比数列; 
(2)求数列{bn}的前n项的和;
(3)若cn=2n-1•bn,求数列{cn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c(a>0,b∈R,c∈R).
(Ⅰ)若函数f(x)的最小值是f(-1)=0,且c=1,又F(x)=
f(x)(x>0)
-f(x)(x<0)
,求F(2)+F(-2)的值;
(Ⅱ)若a=1,c=0,且|f(x)|≤1在区间(0,1]上恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的焦点在x轴,焦距为2
3
,F1,F2是椭圆的左右焦点,P为椭圆上一点,且|PF1|+|PF2|=4.
(Ⅰ)求此椭圆C的标准方程;
(Ⅱ)直线l过焦点F1,斜率为1,交椭圆C于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=pn2+qn.
(1)当p,q满足什么条件时,数列{an}是等差数列;
(2)求证:对任意实数p、q,数列{an+1-an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lg(
4x2+b
+2x)
,其中b是常数.
(1)若y=f(x)是奇函数,求b的值;
(2)求证:y=f(x)的图象上不存在两点A、B,使得直线AB平行于x轴.

查看答案和解析>>

科目:高中数学 来源: 题型:

试探求函数f(x)=x2+2ax+1在区间[-1,3]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)在R上是偶函数,当x>0时,f(x)=2x-x2,则当x<0时,f(x)=
 

查看答案和解析>>

同步练习册答案