精英家教网 > 高中数学 > 题目详情
若函数y=f(x)在R上是偶函数,当x>0时,f(x)=2x-x2,则当x<0时,f(x)=
 
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:根据函数奇偶性的性质,利用对称性即可得到结论.
解答: 解:当x<0时,-x>0,
∵当x>0时,f(x)=2x-x2
∴当-x>0时,f(-x)=-2x-x2
∵y=f(x)在R上是偶函数,
∴f(-x)=-2x-x2=f(x),
即f(x)=-x2-2x,
故答案为:-x2-2x
点评:本题主要考查函数解析式的求法,利用函数奇偶性的性质是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

当m取何值时,对?x总有(m2+4m-5)x2-2(m-1)x+3>0成立?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx;
(Ⅰ)函数g(x)=-ax+f(x)在区间[1,e2]上不单调,求a的取值范围;
(Ⅱ)若k∈Z,且f(x)+x-k(x-1)>0对任意x>1恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(0,1),B(0,-1),C(1,0),动点P满足
AP
BP
=2|
PC
|2
,则|
AP
+
BP
|
的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=loga
1+x
1-x
(a>0且a≠1)下列说法:
①f(x)的定义域是(-1,1);
②当a>1时,使f(x)>0的x的取值范围是(-1,0);
③对定义域内的任意x,f(x)满足f(-x)=-f(x);
④当0<a<1时,如果0<x1<x2<1,则f(x1)<f(x2);
其中正确结论的序号是
 
.(填上你认为正确的所有结论序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-e-x(x∈R),不等式et•f(2t)-mf(t)<0对于t∈(0,1)恒成立,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知log
1
2
(x+y+4)<log
1
2
(3x+y-2),若x-y<λ恒成立,则λ的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3+x(x∈R)当0≤θ<
π
2
时f(msinθ)+f(1-m)≥0恒成立,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=x2+|x-a|-1,x∈R
(1)讨论f(x)的奇偶性;
(2)求f(x)的最小值.

查看答案和解析>>

同步练习册答案