精英家教网 > 高中数学 > 题目详情
已知数列{an}的通项公式为an=pn2+qn.
(1)当p,q满足什么条件时,数列{an}是等差数列;
(2)求证:对任意实数p、q,数列{an+1-an}是等差数列.
考点:等差关系的确定
专题:等差数列与等比数列
分析:(1)根据等差数列的定义,即可得到结论.
(2)根据等差数列的定义即可证明.
解答: 解:(1)∵an=pn2+qn.
∴若数列{an}是等差数列;
则当n>1时,an-an-1=pn2+qn-[p(n-1)2+q(n-1)]=2pn+q-p为常数,
∴必有p=0,
即当p=0,数列{an}是等差数列;
(2)∵an=pn2+qn.
∴当n>1时,an-an-1=pn2+qn-[p(n-1)2+q(n-1)]=2pn+q-p,
即an+1-an=2p(n+1)+q-p,
∴(an+1-an)-(an-an-1)=2p为常数,
即对任意实数p、q,数列{an+1-an}是等差数列.
点评:本题主要考查等差数列的判断,根据等差数列的定义是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三个集合E={x|x=m+
1
6
,m∈Z},F={x|x=
n
2
-
1
3
,n∈Z},G={x|x=
p
2
+
1
6
,p∈Z},则(  )
A、E=F?G
B、E?F=G
C、E⊆F?G
D、E?F?G

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(lga+2)x+lgb满足f(-1)=-2且对于任意x∈R,恒有f(x)≥2x成立.
(1)求实数a,b的值;
(2)不等式f(x)≥a2-4a-15恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+a
2x+1
是奇函数,
(1)求a值,并判断f(x)的单调性(不需证明);
(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

当m取何值时,对?x总有(m2+4m-5)x2-2(m-1)x+3>0成立?

查看答案和解析>>

科目:高中数学 来源: 题型:

求适合下列条件的椭圆的标准方程:
(1)长轴长为12,e=
1
2

(2)经过点P(8,0)和Q(0,6).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)=ax-(k+1)a-x(a>0且a≠1)的定义域为R.
(1)求实数k的值;
(2)若f(1)=1,令g(x)=a2x+a-2x-2mf(x),求实数m的取值范围,使得g(x)>0在[1,+∞)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在原点,焦点在x轴上,离心率e=
1
2
,它的一个顶点恰好是抛物线x2=-12y的焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C与曲线|y|=k•x(k>0)的交点为B、C,求△OBC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-e-x(x∈R),不等式et•f(2t)-mf(t)<0对于t∈(0,1)恒成立,则实数m的取值范围是
 

查看答案和解析>>

同步练习册答案