15£®Ä³Ð£Ò»¸öУ԰¾°¹ÛµÄÖ÷ÌâΪ¡°ÍÐÆðÃ÷ÌìµÄÌ«Ñô¡±£¬ÆäÖ÷ÌåÊÇÒ»¸ö°ë¾¶Îª5Ã×µÄÇòÌ壬ÐèÉè¼ÆÒ»¸ö͸Ã÷µÄÖ§³ÅÎォÆäÍÐÆð£¬¸ÃÖ§³ÅÎïΪµÈ±ßÔ²ÖùÐεIJàÃæ£¬ºñ¶ÈºöÂÔ²»¼Æ£®Öá½ØÃæÈçͼËùʾ£¬Éè¡ÏOAB=¦Á£®£¨×¢£ºµ×ÃæÖ±¾¶ºÍ¸ßÏàµÈµÄÔ²Öù½Ð×öµÈ±ßÔ²Öù£®£©
£¨1£©ÓæÁ±íʾԲÖùµÄ¸ß£»
£¨2£©Êµ¼ù±íÃ÷£¬µ±ÇòÐÄOºÍÔ²Öùµ×ÃæÔ²ÖÜÉϵĵãDµÄ¾àÀë´ïµ½×î´óʱ£¬¾°¹ÛµÄ¹ÛÉÍЧ¹û×î¼Ñ£¬Çó´Ëʱ¦ÁµÄÖµ£®

·ÖÎö £¨1£©×÷OM¡ÍABÓÚµãM£¬ÀûÓÃÖ±½ÇÈý½ÇÐεı߽ǹØÏµ¿ÉµÃ£ºAM=OAcos¦Á=5cos¦Á£¬ÓÉÒÑÖª¿ÉµÃËıßÐÎABCDΪÕý·½ÐΣ¬¼´¿ÉµÃ³ö£®
£¨2£©ÓÉÓàÏÒ¶¨ÀíµÃ£º$O{D^2}={5^2}+{£¨10cos¦Á£©^2}-2¡Á5¡Á£¨10cos¦Á£©cos£¨\frac{¦Ð}{2}+¦Á£©$£¬ÀûÓñ¶½Ç¹«Ê½¡¢ºÍ²î¹«Ê½¡¢Èý½Çº¯ÊýµÄͼÏóÓëÐÔÖʼ´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©×÷OM¡ÍABÓÚµãM£¬ÔòÔÚÖ±½ÇÈý½ÇÐÎOAMÖУ¬
ÒòΪ¡ÏOAB=¦Á£¬
ËùÒÔAM=OAcos¦Á=5cos¦Á£¬¡­£¨3·Ö£©
ÒòΪËıßÐÎABCDÊǵȱßÔ²ÖùµÄÖá½ØÃæ£¬
ËùÒÔËıßÐÎABCDΪÕý·½ÐΣ¬
ËùÒÔAD=AB=2AM=10cos¦Á£® ¡­£¨6·Ö£©
£¨2£©ÓÉÓàÏÒ¶¨ÀíµÃ£º$O{D^2}={5^2}+{£¨10cos¦Á£©^2}-2¡Á5¡Á£¨10cos¦Á£©cos£¨\frac{¦Ð}{2}+¦Á£©$¡­£¨8·Ö£©
=25+100cos2¦Á+50sin2¦Á
=25+50£¨1+cos2¦Á£©+50sin2¦Á
=50£¨sin2¦Á+cos2¦Á£©+75
=50$\sqrt{2}$sin$£¨2¦Á+\frac{¦Ð}{4}£©$+75£®¡­£¨10·Ö£©
ÒòΪ$¦Á¡Ê£¨0£¬\frac{¦Ð}{2}£©$£¬ËùÒÔ$2¦Á+\frac{¦Ð}{4}¡Ê£¨\frac{¦Ð}{4}£¬\frac{5¦Ð}{4}£©$£¬
ËùÒÔµ±2¦Á+$\frac{¦Ð}{4}$=$\frac{¦Ð}{2}$£¬¼´$¦Á=\frac{¦Ð}{8}$ʱ£¬OD2È¡µÃ×î´óÖµ$50\sqrt{2}+75$=$25{£¨\sqrt{2}+1£©^2}$£¬¡­£¨12·Ö£©
ËùÒÔµ±¦Á=$\frac{¦Ð}{8}$ʱ£¬ODµÄ×î´óֵΪ$5£¨\sqrt{2}+1£©$£®
´ð£ºµ±¦Á=$\frac{¦Ð}{8}$ʱ£¬¹ÛÉÍЧ¹û×î¼Ñ£®          ¡­£¨14·Ö£©

µãÆÀ ±¾Ì⿼²éÁËÖ±½ÇÈý½ÇÐεı߽ǹØÏµ¡¢Õý·½ÐεÄÐÔÖÊ¡¢ÓàÏÒ¶¨Àí¡¢±¶½Ç¹«Ê½¡¢ºÍ²î¹«Ê½¡¢Èý½Çº¯ÊýµÄͼÏóÓëÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Èçͼ£¬ÔÚ¡÷OABÖУ¬C¡¢D·Ö±ðΪAB¡¢OBµÄÖе㣬EΪOAÉÏÀëµãO×î½üµÄËĵȷֵ㣬FΪCEÓëADµÄ½»µã£¬Èô$\overrightarrow{OA}$=$\overrightarrow{a}$£¬$\overrightarrow{OB}$=$\overrightarrow{b}$£¬Ôò$\overrightarrow{OF}$=£¨¡¡¡¡£©
A£®$\frac{2}{5}$$\overrightarrow{a}$+$\frac{3}{10}$$\overrightarrow{b}$B£®$\frac{2}{5}$$\overrightarrow{a}$+$\frac{3}{5}$$\overrightarrow{b}$C£®$\frac{1}{5}$$\overrightarrow{a}$+$\frac{3}{10}$$\overrightarrow{b}$D£®$\frac{3}{5}$$\overrightarrow{a}$+$\frac{3}{10}$$\overrightarrow{b}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÔÚÆ½ÃæÇøÓò{x£¬y£©|x|¡Ü1£¬|y|¡Ü1}ÉϺãÓÐax-2by¡Ü2£¬Ôò¶¯µãP£¨a£¬b£©ËùÐÎ³ÉÆ½ÃæÇøÓòµÄÃæ»ýΪ£¨¡¡¡¡£©
A£®4B£®8C£®16D£®32

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖªº¯Êýf£¨x£©ÊÇRÉϵÄÔöº¯Êý£¬ËüµÄͼÏó¾­¹ýµãA£¨0£¬-2£©£¬B£¨3£¬2£©£¬Ôò²»µÈʽ|f£¨x+1£©|¡Ý2µÄ½â¼¯Îª£¨¡¡¡¡£©
A£®[-1£¬2]B£®£¨-¡Þ£¬-1£©C£®[2£¬+¡Þ£©D£®£¨-¡Þ£¬-1]¡È[2£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÈôÊýÁÐ{an}µÄǰnÏîºÍSn=3¡Á2n-3£¬ÊýÁÐ{bn}Âú×ãbn=an2£¬ÔòÊýÁÐ{bn}µÄǰ100ÏîµÄºÍΪ£¨¡¡¡¡£©
A£®3¡Á4100-3B£®3¡Á4100C£®2¡Á4100D£®2¡Á4100-3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÉèÖ±Ïß3x-2y-12=0ÓëÖ±Ïß4x+3y+1=0½»ÓÚµãM£¬ÈôÒ»Ìõ¹âÏß´ÓµãP£¨3£¬2£©Éä³ö£¬¾­yÖá·´Éäºó¹ýµãM£¬ÔòÈËÉä¹âÏßËùÔÚµÄÖ±Ïß·½³ÌΪ£¨¡¡¡¡£©
A£®x-y-1=0B£®x-y+1=0C£®x-y-5=0D£®x+y-5=0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨1£¬-3£©£¬$\overrightarrow{b}$=£¨-2£¬-4£©£¬Ôò£¨¡¡¡¡£©
A£®$\overrightarrow{a}$$¡Í\overrightarrow{b}$B£®$\overrightarrow{a}$¡Î$\overrightarrow{b}$C£®$\overrightarrow{a}$¡Í£¨$\overrightarrow{a}$$-\overrightarrow{b}$£©D£®$\overrightarrow{a}$¡Î£¨$\overrightarrow{a}$$-\overrightarrow{b}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®¶¨ÒåÔÚÇø¼ä£¨1£¬+¡Þ£©Äڵĺ¯Êýf£¨x£©Âú×ãÏÂÁÐÁ½¸öÌõ¼þ£º
¢Ù¶ÔÈÎÒâµÄx¡Ê£¨1£¬+¡Þ£©£¬ºãÓÐf£¨2x£©=2f£¨x£©³ÉÁ¢£»
¢Úµ±x¡Ê£¨1£¬2]ʱ£¬f£¨x£©=2-x£®
ÒÑÖªº¯Êýy=f£¨x£©µÄͼÏóÓëÖ±Ïßmx-y-m=0Ç¡ÓÐÁ½¸ö½»µã£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[1£¬2£©B£®£¨1£¬2]C£®[$\frac{4}{3}$£¬2£©D£®£¨$\frac{4}{3}$£¬2]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®º¯Êýf£¨x£©=6+12x-x3ÔÚ[-1£¬3]ÉϵÄ×î´óÖµÓë×îСֵ֮ºÍΪ£¨¡¡¡¡£©
A£®10B£®12C£®17D£®19

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸