精英家教网 > 高中数学 > 题目详情
5.如图,在△OAB中,C、D分别为AB、OB的中点,E为OA上离点O最近的四等分点,F为CE与AD的交点,若$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,则$\overrightarrow{OF}$=(  )
A.$\frac{2}{5}$$\overrightarrow{a}$+$\frac{3}{10}$$\overrightarrow{b}$B.$\frac{2}{5}$$\overrightarrow{a}$+$\frac{3}{5}$$\overrightarrow{b}$C.$\frac{1}{5}$$\overrightarrow{a}$+$\frac{3}{10}$$\overrightarrow{b}$D.$\frac{3}{5}$$\overrightarrow{a}$+$\frac{3}{10}$$\overrightarrow{b}$

分析 首先根据在△OAB中,C、D分别为AB、OB的中点,E为OA上离点O最近的四等分点,得到CD与OA的长度的关系,进一步得到向量的线性关系,利用三角形法则运算,得到所求.

解答 解:在△OAB中,C、D分别为AB、OB的中点,E为OA上离点O最近的四等分点,所以$\frac{CD}{AE}=\frac{\frac{1}{2}OA}{\frac{3}{4}OA}=\frac{2}{3}$,
所以$\overrightarrow{OF}=\overrightarrow{OE}+\overrightarrow{EF}$=$\frac{1}{4}\overrightarrow{OA}+\frac{3}{5}\overrightarrow{EC}$=$\frac{1}{4}\overrightarrow{OA}+\frac{3}{5}(\overrightarrow{EA}+\overrightarrow{AC})$=$\frac{1}{4}\overrightarrow{OA}+\frac{3}{5}(\frac{3}{4}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{AB})$=$\frac{1}{4}\overrightarrow{OA}+\frac{9}{20}\overrightarrow{OA}+\frac{3}{10}(\overrightarrow{OB}-\overrightarrow{OA})$=$\frac{2}{5}\overrightarrow{OA}+\frac{3}{10}\overrightarrow{OB}$=$\frac{2}{5}\overrightarrow{a}+\frac{3}{10}\overrightarrow{b}$;
故选:A.

点评 本题考查了平面向量加减法的三角形法则的运用;要充分利用C、D分别为AB、OB的中点,E为OA上离点O最近的四等分点,得到向量之间的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.在平行四边形ABCD中,AD=4,∠BAD=$\frac{π}{3}$,E为CD中点,若$\overrightarrow{AC}•\overrightarrow{BE}$=4,则AB的长为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知$α∈(0,π),sinα+cosα=\frac{1}{5}$.
(Ⅰ) 求sinα-cosα的值;
(Ⅱ) 求$cos(2α+\frac{π}{3})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=∠ACD=90°,∠EAC=60°,AB=AC=AE.
(Ⅰ)求平面EBD与平面ABC所成的锐二面角的余弦值;
(Ⅱ)直线EA与平面BCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的参数方程为:$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=-2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$,曲线C2的极坐标方程为:ρ2(1+sin2θ)=8,
(I)写出C1的普通方程和C2的直角坐标方程;
(II)若C1与C2交于两点A,B,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设△ABC的三个内角A,B,C的对边分别为a,b,c满足b2=ac且sinAsinC=$\frac{3}{4}$,则角B=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知实数x,y满足关系$\left\{\begin{array}{l}x+y≥2\\ x-y≤2\\ 1≤y≤3\end{array}\right.$,则$z=\frac{1}{2}x-y$的取值范围为(-$\frac{7}{2}$,$-\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.射击项目选拔赛,四人的平均成绩和方差如下表所示:
  甲 乙 丙 丁
 平均环数$\overline{x}$ 8.3 8.8 8.8 8.7
 方差s2 3.5 3.6 2.2 5.4
从这四个人中选择一人参加该射击项目比赛,最佳人选是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某校一个校园景观的主题为“托起明天的太阳”,其主体是一个半径为5米的球体,需设计一个透明的支撑物将其托起,该支撑物为等边圆柱形的侧面,厚度忽略不计.轴截面如图所示,设∠OAB=α.(注:底面直径和高相等的圆柱叫做等边圆柱.)
(1)用α表示圆柱的高;
(2)实践表明,当球心O和圆柱底面圆周上的点D的距离达到最大时,景观的观赏效果最佳,求此时α的值.

查看答案和解析>>

同步练习册答案