精英家教网 > 高中数学 > 题目详情
10.设△ABC的三个内角A,B,C的对边分别为a,b,c满足b2=ac且sinAsinC=$\frac{3}{4}$,则角B=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{2π}{3}$

分析 利用等差中项的性质建立a,b和c的关系式,利用正弦定理把边转化成角的正弦,求得sinB的值,进而求得B.

解答 解:∵b2=ac.
∵$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$,
∴sin2B=sinAsinC.
又∵sinAsinC=$\frac{3}{4}$.
∴sin2B=$\frac{3}{4}$.
∵sinB>0,
∴sinB=$\frac{\sqrt{3}}{2}$.
∴B=$\frac{π}{3}$或$\frac{2π}{3}$.
又∵a,b,c满足b2=ac,a,b,c成等比数列,
∴b≤a或b≤c,即b不是△ABC的最大边,故B=$\frac{π}{3}$.
故选:B.

点评 本题主要考查了正弦定理的运用.在解三角形问题中往往通过正弦定理和余弦定理把角和边的问题互化,进而找到解决问题的突破口,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知复数z=$\frac{{4+\sqrt{2}i}}{1-i}$,i为虚数单位,则|z|=(  )
A.9B.3C.$\frac{{3\sqrt{2}}}{2}$D.9$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.不等式|x-3|+|x-2|≥3的解集是(  )
A.{x|x≥3或x≤1}B.{x|x≥4或x≤2}C.{x|x≥2或x≤1}D.{x|x≥4或x≤1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知$cos({\frac{π}{2}+α})=2sin({α-\frac{π}{2}})$求$\frac{{sin({π-α})+cos({α+π})}}{{5cos({\frac{5π}{2}-α})+3sin({\frac{7π}{2}-α})}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,在△OAB中,C、D分别为AB、OB的中点,E为OA上离点O最近的四等分点,F为CE与AD的交点,若$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,则$\overrightarrow{OF}$=(  )
A.$\frac{2}{5}$$\overrightarrow{a}$+$\frac{3}{10}$$\overrightarrow{b}$B.$\frac{2}{5}$$\overrightarrow{a}$+$\frac{3}{5}$$\overrightarrow{b}$C.$\frac{1}{5}$$\overrightarrow{a}$+$\frac{3}{10}$$\overrightarrow{b}$D.$\frac{3}{5}$$\overrightarrow{a}$+$\frac{3}{10}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=$\overrightarrow a•\overrightarrow b$,其中$\overrightarrow a=(2cosx,-\sqrt{3}sin2x),\overrightarrow b=(cosx,1),x∈R$.
(1)求f(x)的最小正周期;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=-1,a=$\frac{{\sqrt{7}}}{2}$,且向量$\overrightarrow m=(3,sinB)$与$\overrightarrow n=(2,sinC)$共线,求边长b和c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知A,B,C三点都在体积为$\frac{500π}{3}$的球O的表面上,若$AB=4\sqrt{3}$,∠ACB=60°,则球心O到平面ABC的距离为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在△ABC中,D,E分别为BC,AB的中点,F为AD的中点.
(1)试用$\overrightarrow{AB}$,$\overrightarrow{AC}$表示$\overrightarrow{CE}$,$\overrightarrow{AF}$;
(2)若AB=2,AC=1,∠BAC=60°,求$\overrightarrow{AB}$$•\overrightarrow{AC}$,$\overrightarrow{CE}$$•\overrightarrow{AF}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设直线3x-2y-12=0与直线4x+3y+1=0交于点M,若一条光线从点P(3,2)射出,经y轴反射后过点M,则人射光线所在的直线方程为(  )
A.x-y-1=0B.x-y+1=0C.x-y-5=0D.x+y-5=0

查看答案和解析>>

同步练习册答案