精英家教网 > 高中数学 > 题目详情
20.在明朝程大位所著《算法统宗》中,有这样的一首歌谣,叫做浮屠增级歌.“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔其古称浮屠,它一共有七层,每层悬挂的红灯数是上一层的2倍,全塔总共有381盏灯,问塔顶有几盏灯?据此,你算出顶层悬挂的红灯的盏数为(  )
A.5B.4C.3D.4

分析 设每层悬挂的红灯的盏数为an,则数列{an}为等比数列,公比为2,S7=381.利用等比数列的求和公式即可得出.

解答 解:设每层悬挂的红灯的盏数为an,则数列{an}为等比数列,公比为2,S7=381.
∴$\frac{{a}_{1}({2}^{7}-1)}{2-1}$=381,解得a1=3.
故选:C.

点评 本题考查了等比数列的求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(1,2),向量$\overrightarrow{c}$在$\overrightarrow{a}$方向上的投影为2.若$\overrightarrow{c}$∥$\overrightarrow{b}$,则|$\overrightarrow{c}$|的大小为(  )
A..2B.$\sqrt{5}$C.4D.$2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知定义在R上的函数f(x)满足f(x)=(x+2),且当-l≤x≤1时,f(x)=2|x|,函数g(x)=x+$\sqrt{2}$,实数a,b满足b>a>3.若?x1∈[a,b],?x2∈[-$\sqrt{2}$,0],使得f(x1)=g(x2)成立,则b-a的最大值为(  )
A.$\frac{1}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.命题“?x∈N,x2>x”的否定为(  )
A.?x∈N,x2≤xB.?x0∈N,${x}_{0}^{2}$≤x0C.?x∉N,x2>xD.?x0∉N,${x}_{0}^{2}$≤x0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知点P(a,b)及圆O:x2+y2=r2,则“点P在圆O内”是“直线l:ax+by=r2与圆O相离”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某产品的广告费用x万元与销售额y万元的统计数据如表:
广告费用x2345
销售额y26394954
根据上表可得回归方程$\widehaty=9.4x+a$,据此模型预测,广告费用为6万元时的销售额为(  )万元.
A.65.5B.66.6C.67.7D.72

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点在直线x=6上,其中一条渐近线方程为y=$\sqrt{3}$x,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{36}$-$\frac{{y}^{2}}{108}$=1B.$\frac{{x}^{2}}{108}$-$\frac{{y}^{2}}{36}$=1C.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{27}$=1D.$\frac{{x}^{2}}{27}$-$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=e2x+2cosx-4在[0,2π]上是(  )
A.在[0,π]上是减函数,[0,2π]上是增函数B.[0,π]在上是增函数,[0,2π]上是减函数
C.增函数D.减函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知数列{1+an}是以2为公比的等比数列,且a1=1,则a5=(  )
A.31B.24C.21D.7

查看答案和解析>>

同步练习册答案