精英家教网 > 高中数学 > 题目详情
8.命题“?x∈N,x2>x”的否定为(  )
A.?x∈N,x2≤xB.?x0∈N,${x}_{0}^{2}$≤x0C.?x∉N,x2>xD.?x0∉N,${x}_{0}^{2}$≤x0

分析 利用全称命题的否定是特称命题,写出结果即可.

解答 解:因为全称命题的否定是特称命题,所以,命题P“?x∈N,x2>x,则¬P为?x0∈N,${x}_{0}^{2}$≤x0
故选:B.

点评 本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知两点A(-1,1),B(3,5),点C在曲线y=2x2上运动,则$\overrightarrow{AB}•\overrightarrow{AC}$的最小值为(  )
A.2B.$\frac{1}{2}$C.-2D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若集合M={x|x2+5x-14<0},N={x|m<x<m+3},且M∩N=∅,则m的取值范围为(  )
A.(-10,2)B.(-∞,-10)∪(2,+∞)C.[-10,2]D.(-∞,-10]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知一只蚂蚁在边长分别为5,12,13的三角形的边上随机爬行,则其恰在离三个顶点的距离都大于1的地方的概率为(  )
A.$\frac{π}{60}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某撤信群中四人同时抢3个红包,每人最多抢一个,则其中甲、乙两人都抢到红包的概率为(  )
A.$\frac{1}{4}$B.$\frac{3}{4}$C.$\frac{3}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.不等式组$\left\{{\begin{array}{l}{x-2≤0}\\{y-1≤0}\\{x+2y-2≥0}\end{array}}\right.$表示的平面区域的面积是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在明朝程大位所著《算法统宗》中,有这样的一首歌谣,叫做浮屠增级歌.“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔其古称浮屠,它一共有七层,每层悬挂的红灯数是上一层的2倍,全塔总共有381盏灯,问塔顶有几盏灯?据此,你算出顶层悬挂的红灯的盏数为(  )
A.5B.4C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.抛物线y2=2px(p>0)的焦点为F,其准线经过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点,点M为这两条曲线的一个交点,且|MF|=p,则双曲线的离心率为(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.$\frac{\sqrt{2}+1}{2}$D.$\sqrt{2}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=lnx+\frac{1}{x}$.
(1)求f(x)的最小值;
(2)若方程f(x)=a有两个根x1,x2(x1<x2),证明:x1+x2>2.

查看答案和解析>>

同步练习册答案