精英家教网 > 高中数学 > 题目详情
17.抛物线y2=2px(p>0)的焦点为F,其准线经过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点,点M为这两条曲线的一个交点,且|MF|=p,则双曲线的离心率为(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.$\frac{\sqrt{2}+1}{2}$D.$\sqrt{2}$+1

分析 确定抛物线y2=2px(p>0)的焦点与准线方程,利用点M为这两条曲线的一个交点,且|MF|=p,求出M的坐标,代入双曲线方程,即可求得结论.

解答 解:抛物线y2=2px(p>0)的焦点为F($\frac{p}{2}$,0),其准线方程为x=-$\frac{p}{2}$,
∵准线经过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点,
∴c=$\frac{p}{2}$;
∵点M为这两条曲线的一个交点,且|MF|=p,
∴M的横坐标为$\frac{p}{2}$,
代入抛物线方程,可得M的纵坐标为±p,
将M的坐标代入双曲线方程,可得$\frac{\frac{{p}^{2}}{4}}{{a}^{2}}-\frac{{p}^{2}}{{b}^{2}}$=1,
∴a=$\frac{\sqrt{2}-1}{2}$p,
∴e=1+$\sqrt{2}$.
故选:D.

点评 本题考查抛物线的几何性质,考查曲线的交点,考查双曲线的几何性质,确定M的坐标是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点与短轴的一个端点是直角三角形的3个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T.
(Ⅰ)求椭圆E的方程及点T的坐标;
(Ⅱ)设O是坐标原点,直线l'平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.证明:存在常数λ,使得PT2=λ|PA|•|PB|,并求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.命题“?x∈N,x2>x”的否定为(  )
A.?x∈N,x2≤xB.?x0∈N,${x}_{0}^{2}$≤x0C.?x∉N,x2>xD.?x0∉N,${x}_{0}^{2}$≤x0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某产品的广告费用x万元与销售额y万元的统计数据如表:
广告费用x2345
销售额y26394954
根据上表可得回归方程$\widehaty=9.4x+a$,据此模型预测,广告费用为6万元时的销售额为(  )万元.
A.65.5B.66.6C.67.7D.72

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点在直线x=6上,其中一条渐近线方程为y=$\sqrt{3}$x,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{36}$-$\frac{{y}^{2}}{108}$=1B.$\frac{{x}^{2}}{108}$-$\frac{{y}^{2}}{36}$=1C.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{27}$=1D.$\frac{{x}^{2}}{27}$-$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知点A是抛物线x2=4y的对称轴与准线的交点,点B为抛物线的焦点,P在抛物线上且当PA与抛物线相切时,点P恰好在以A、B为焦点的双曲线上,则双曲线的离心率为(  )
A.$\frac{{\sqrt{5}-1}}{2}$B.$\frac{{\sqrt{2}+1}}{2}$C.$\sqrt{2}+1$D.$\sqrt{5}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=e2x+2cosx-4在[0,2π]上是(  )
A.在[0,π]上是减函数,[0,2π]上是增函数B.[0,π]在上是增函数,[0,2π]上是减函数
C.增函数D.减函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知图甲是函数f(x)的图象,图乙是由图甲变换所得,则图乙中的图象对应的函数可能是(  )
A.y=f(|x|)B.y=|f(x)|C.y=f(-|x|)D.y=-f(-|x|)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若sinθ<cosθ,且sinθ•cosθ<0,则角θ的终边位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案