7£®ÒÑÖªÍÖÔ²E£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÁ½¸ö½¹µãÓë¶ÌÖáµÄÒ»¸ö¶ËµãÊÇÖ±½ÇÈý½ÇÐεÄ3¸ö¶¥µã£¬Ö±Ïßl£ºy=-x+3ÓëÍÖÔ²EÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µãT£®
£¨¢ñ£©ÇóÍÖÔ²EµÄ·½³Ì¼°µãTµÄ×ø±ê£»
£¨¢ò£©ÉèOÊÇ×ø±êÔ­µã£¬Ö±Ïßl'ƽÐÐÓÚOT£¬ÓëÍÖÔ²E½»ÓÚ²»Í¬µÄÁ½µãA¡¢B£¬ÇÒÓëÖ±Ïßl½»ÓÚµãP£®Ö¤Ã÷£º´æÔÚ³£Êý¦Ë£¬Ê¹µÃPT2=¦Ë|PA|•|PB|£¬²¢Çó¦ËµÄÖµ£®

·ÖÎö £¨¢ñ£©ÓÉa2=2b2£¬´úÈëÍÖÔ²·½³Ì£¬ÕûÀíµÃx2+2y2-2b2=0£¬½«y=-x+3´úÈ룬¡÷=0£¬¼´¿ÉÇóµÃbµÄÖµ£¬ÇóµÃaµÄÖµ£¬ÇóµÃÍÖÔ²·½³Ì£»
£¨¢ò£©½«l'ºÍy=-x+3ÁªÁ¢ÇóµÃPµã×ø±ê£¬ÇóµÃØ­PTØ­£¬½«l'´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí¼°ÏÒ³¤¹«Ê½ÇóµÃØ­PAØ­£¬Í¬ÀíØ­PBØ­£¬¼´¿ÉÇóµÃ¹Ê´æÔÚ³£Êý$¦Ë=\frac{4}{5}$£¬Ê¹µÃPT2=¦Ë|PA|•|PB|£®

½â´ð ½â£º£¨¢ñ£©ÒÀÌâÒâ¿ÉÖªb=c£¬a2=2b2£¬¿ÉÉèÍÖÔ²·½³ÌΪ$\frac{x^2}{{2{b^2}}}+\frac{y^2}{b^2}=1$£¬
¼´x2+2y2-2b2=0£¬´úÈë$\left\{\begin{array}{l}{y=-x+3}\\{{x}^{2}+2{y}^{2}-2{b}^{2}=0}\end{array}\right.$£¬ÕûÀíµÃ3x2-12x+18-2b2=0£¬
ÓÉ¡÷=122-12£¨18-2b2£©=0£¬µÃb2=3£¬
¹ÊÍÖÔ²EµÄ·½³ÌΪ$\frac{x^2}{6}+\frac{y^2}{3}=1$£®
µãTµÄ×ø±êΪ£¨2£¬1£©£®
£¨¢ò£©ÉèÖ±Ïßl'£º$y=\frac{1}{2}x+m$£¨m¡Ù0£©£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉ$\left\{\begin{array}{l}y=\frac{1}{2}x+m\\ y=-x+3\end{array}\right.$£¬µÃ$P£¨2-\frac{2}{3}m£¬1+\frac{2}{3}m£©$£¬¹Ê$|PT{|^2}=\frac{8}{9}{m^2}$£®
ÓÉ$\left\{\begin{array}{l}y=\frac{1}{2}x+m\\ \frac{x^2}{6}+\frac{y^2}{3}=1\end{array}\right.$£¬µÃ3x2+4mx+£¨4m2-12£©=0£¬
¡÷=16£¨9-2m2£©£¾0£¬
Ôò${x_1}+{x_2}=-\frac{4}{3}m$£¬${x_1}{x_2}=\frac{{4{m^2}-12}}{3}$£®$|PA|=\sqrt{1+{{£¨\frac{1}{2}£©}^2}}|2-\frac{2m}{3}-{x_1}|=\frac{{\sqrt{5}}}{2}|2-\frac{2m}{3}-{x_1}|$£¬
ͬÀí$|PB|=\frac{{\sqrt{5}}}{2}|2-\frac{2m}{3}-{x_2}|$£¬
$|PA|•|PB|=\frac{5}{4}|{£¨2-\frac{2m}{3}£©^2}-£¨2-\frac{2m}{3}£©£¨{x_1}+{x_2}£©+{x_1}{x_2}|$£¬
=$\frac{5}{4}|{£¨2-\frac{2m}{3}£©^2}-£¨2-\frac{2m}{3}£©£¨-\frac{4m}{3}£©+\frac{{4{m^2}-12}}{3}|=\frac{{10{m^2}}}{9}$£®
¹Ê´æÔÚ³£Êý$¦Ë=\frac{4}{5}$£¬Ê¹µÃPT2=¦Ë|PA|•|PB|£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨Àí£¬ÏÒ³¤¹«Ê½£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖª¸´Êýz1=-1+i£¬z2=1+i£¬z3=1+4i£¬ËüÃÇËù¶ÔÓ¦µÄµã·Ö±ðÊÇA£¬B£¬C£¬Èô$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$£¨x£¬y¡ÊR£©£¬Ôòx+yµÄÖµÊÇ4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªÁ½µãA£¨-1£¬1£©£¬B£¨3£¬5£©£¬µãCÔÚÇúÏßy=2x2ÉÏÔ˶¯£¬Ôò$\overrightarrow{AB}•\overrightarrow{AC}$µÄ×îСֵΪ£¨¡¡¡¡£©
A£®2B£®$\frac{1}{2}$C£®-2D£®$-\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Éè±äÁ¿x£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}x-2y¡Ü2\\ 3x+y¡Ü4\\ x-y¡Ý-4\end{array}\right.$£¬ÔòÄ¿±êº¯Êýz=y-2xµÄ×î´óÖµÊÇ14£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÍÖÔ²C1ºÍÅ×ÎïÏßC2Óй«¹²½¹µãF£¨1£¬0£©£¬C1µÄÖÐÐĺÍC2µÄ¶¥µã¶¼ÔÚ×ø±êÔ­µã£¬¹ýµãM£¨4£¬0£©µÄÖ±ÏßlÓëÅ×ÎïÏßC2·Ö±ðÏཻÓÚA£¬BÁ½µã£¨ÆäÖеãAÔÚµÚËÄÏóÏÞÄÚ£©£®
£¨1£©Èô|MB|=4|AM|£¬ÇóÖ±ÏßlµÄ·½³Ì£»
£¨2£©Èô×ø±êÔ­µãO¹ØÓÚÖ±ÏßlµÄ¶Ô³ÆµãPÔÚÅ×ÎïÏßC2ÉÏ£¬Ö±ÏßlÓëÍÖÔ²C1Óй«¹²µã£¬ÇóÍÖÔ²C1µÄ³¤Ö᳤µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®É輯ºÏA1={a1}£¬A2={a2£¬a3}£¬A3={a4£¬a5£¬a6}£¬A4={a7£¬a8£¬a9£¬a10}£¬¡­£¬ÆäÖÐ{an}Ϊ¹«²î´óÓÚ0µÄµÈ²îÊýÁУ¬ÈôA2={3£¬5}£¬Ôò199ÊôÓÚ£¨¡¡¡¡£©
A£®A12B£®A13C£®A14D£®A15

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Èô¼¯ºÏM={x|x2+5x-14£¼0}£¬N={x|m£¼x£¼m+3}£¬ÇÒM¡ÉN=∅£¬ÔòmµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®£¨-10£¬2£©B£®£¨-¡Þ£¬-10£©¡È£¨2£¬+¡Þ£©C£®[-10£¬2]D£®£¨-¡Þ£¬-10]¡È[2£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªÒ»Ö»ÂìÒÏÔڱ߳¤·Ö±ðΪ5£¬12£¬13µÄÈý½ÇÐεıßÉÏËæ»úÅÀÐУ¬ÔòÆäÇ¡ÔÚÀëÈý¸ö¶¥µãµÄ¾àÀë¶¼´óÓÚ1µÄµØ·½µÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{60}$B£®$\frac{3}{5}$C£®$\frac{4}{5}$D£®$\frac{¦Ð}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Å×ÎïÏßy2=2px£¨p£¾0£©µÄ½¹µãΪF£¬Æä×¼Ïß¾­¹ýË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ×󽹵㣬µãMΪÕâÁ½ÌõÇúÏßµÄÒ»¸ö½»µã£¬ÇÒ|MF|=p£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®2$\sqrt{2}$C£®$\frac{\sqrt{2}+1}{2}$D£®$\sqrt{2}$+1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸