·ÖÎö £¨¢ñ£©ÓÉa2=2b2£¬´úÈëÍÖÔ²·½³Ì£¬ÕûÀíµÃx2+2y2-2b2=0£¬½«y=-x+3´úÈ룬¡÷=0£¬¼´¿ÉÇóµÃbµÄÖµ£¬ÇóµÃaµÄÖµ£¬ÇóµÃÍÖÔ²·½³Ì£»
£¨¢ò£©½«l'ºÍy=-x+3ÁªÁ¢ÇóµÃPµã×ø±ê£¬ÇóµÃØPTØ£¬½«l'´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí¼°ÏÒ³¤¹«Ê½ÇóµÃØPAØ£¬Í¬ÀíØPBØ£¬¼´¿ÉÇóµÃ¹Ê´æÔÚ³£Êý$¦Ë=\frac{4}{5}$£¬Ê¹µÃPT2=¦Ë|PA|•|PB|£®
½â´ð ½â£º£¨¢ñ£©ÒÀÌâÒâ¿ÉÖªb=c£¬a2=2b2£¬¿ÉÉèÍÖÔ²·½³ÌΪ$\frac{x^2}{{2{b^2}}}+\frac{y^2}{b^2}=1$£¬
¼´x2+2y2-2b2=0£¬´úÈë$\left\{\begin{array}{l}{y=-x+3}\\{{x}^{2}+2{y}^{2}-2{b}^{2}=0}\end{array}\right.$£¬ÕûÀíµÃ3x2-12x+18-2b2=0£¬
ÓÉ¡÷=122-12£¨18-2b2£©=0£¬µÃb2=3£¬
¹ÊÍÖÔ²EµÄ·½³ÌΪ$\frac{x^2}{6}+\frac{y^2}{3}=1$£®
µãTµÄ×ø±êΪ£¨2£¬1£©£®
£¨¢ò£©ÉèÖ±Ïßl'£º$y=\frac{1}{2}x+m$£¨m¡Ù0£©£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉ$\left\{\begin{array}{l}y=\frac{1}{2}x+m\\ y=-x+3\end{array}\right.$£¬µÃ$P£¨2-\frac{2}{3}m£¬1+\frac{2}{3}m£©$£¬¹Ê$|PT{|^2}=\frac{8}{9}{m^2}$£®
ÓÉ$\left\{\begin{array}{l}y=\frac{1}{2}x+m\\ \frac{x^2}{6}+\frac{y^2}{3}=1\end{array}\right.$£¬µÃ3x2+4mx+£¨4m2-12£©=0£¬
¡÷=16£¨9-2m2£©£¾0£¬
Ôò${x_1}+{x_2}=-\frac{4}{3}m$£¬${x_1}{x_2}=\frac{{4{m^2}-12}}{3}$£®$|PA|=\sqrt{1+{{£¨\frac{1}{2}£©}^2}}|2-\frac{2m}{3}-{x_1}|=\frac{{\sqrt{5}}}{2}|2-\frac{2m}{3}-{x_1}|$£¬
ͬÀí$|PB|=\frac{{\sqrt{5}}}{2}|2-\frac{2m}{3}-{x_2}|$£¬
$|PA|•|PB|=\frac{5}{4}|{£¨2-\frac{2m}{3}£©^2}-£¨2-\frac{2m}{3}£©£¨{x_1}+{x_2}£©+{x_1}{x_2}|$£¬
=$\frac{5}{4}|{£¨2-\frac{2m}{3}£©^2}-£¨2-\frac{2m}{3}£©£¨-\frac{4m}{3}£©+\frac{{4{m^2}-12}}{3}|=\frac{{10{m^2}}}{9}$£®
¹Ê´æÔÚ³£Êý$¦Ë=\frac{4}{5}$£¬Ê¹µÃPT2=¦Ë|PA|•|PB|£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨Àí£¬ÏÒ³¤¹«Ê½£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2 | B£® | $\frac{1}{2}$ | C£® | -2 | D£® | $-\frac{1}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | A12 | B£® | A13 | C£® | A14 | D£® | A15 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-10£¬2£© | B£® | £¨-¡Þ£¬-10£©¡È£¨2£¬+¡Þ£© | C£® | [-10£¬2] | D£® | £¨-¡Þ£¬-10]¡È[2£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{¦Ð}{60}$ | B£® | $\frac{3}{5}$ | C£® | $\frac{4}{5}$ | D£® | $\frac{¦Ð}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\sqrt{2}$ | B£® | 2$\sqrt{2}$ | C£® | $\frac{\sqrt{2}+1}{2}$ | D£® | $\sqrt{2}$+1 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com