精英家教网 > 高中数学 > 题目详情
15.设变量x,y满足约束条件$\left\{\begin{array}{l}x-2y≤2\\ 3x+y≤4\\ x-y≥-4\end{array}\right.$,则目标函数z=y-2x的最大值是14.

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.

解答 14解:作出不等式组对应的平面区域如图:(阴影部分).
由z=y-2x得y=2x+z,
平移直线y=2x+z,
由图象可知当直线y=2x+z经过点B时,直线y=2x+z的截距最大,此时z最大.
由$\left\{\begin{array}{l}{x-2y=2}\\{x-y=-4}\end{array}\right.$,解得x=-10,y=-6即B(-10,-6),
代入目标函数得z=-6+2×(-10)=14
即z=y-2x的最大值是14.
故答案为:14.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=4cos({x-\frac{π}{2}})•sin({x-\frac{π}{3}})-1$.
(1)求函数y=f(x)的最小正周期;
(2)已知△ABC中,角A,B,C的对边分别是a,b,c,且a,b,c成等比数列,求f(B)的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知实数x,y满足$\left\{\begin{array}{l}x-y≥3\\ x+2y≥6\\ x≤8\end{array}\right.$则z=x-2y的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某中学为了解高中入学新生的身高情况,从高一年级学生中按分层抽样共抽取了50名学生的身高数据,分组统计后得到了这50名学生身高的频数分布表:
 身高(cm)分组[145,155)[155,165)[165,175)[175,185]
 男生频数 1 5 12 4
 女生频数 7 15 4 2
(Ⅰ)在答题卡上作出这50名学生身高的频率分布直方图;
(Ⅱ)估计这50名学生身高的方差(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)现从身高在[175,185]这6名学生中随机抽取3名,求至少抽到1名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(1,2),向量$\overrightarrow{c}$在$\overrightarrow{a}$方向上的投影为2.若$\overrightarrow{c}$∥$\overrightarrow{b}$,则|$\overrightarrow{c}$|的大小为(  )
A..2B.$\sqrt{5}$C.4D.$2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某食品店为了了解气温对销售量的影响,随机记录了该店1月份中5天的日销售量y(单位:千克)与该地当日最低气温x(单位:°C)的数据,如下表:
x258911
y1210887
(1)求出y与x的回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)判断y与x之间是正相关还是负相关;若该地1月份某天的最低气温为6°C,请用所求回归方程预测该店当日的销售量;
(3)设该地1月份的日最低气温X~N(μ,σ2),其中μ近似为样本平均数$\overline x$,σ2近似为样本方差s2,求P(3.8<X<13.4).
附:①回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中,$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n\overline{x\overline{y}}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
②$\sqrt{10}$≈3.2,$\sqrt{3.2}$≈1.8.若X~N(μ,σ2),则P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点与短轴的一个端点是直角三角形的3个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T.
(Ⅰ)求椭圆E的方程及点T的坐标;
(Ⅱ)设O是坐标原点,直线l'平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.证明:存在常数λ,使得PT2=λ|PA|•|PB|,并求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.P为双曲线x2$-\frac{{y}^{2}}{3}$=1右支上一点,F1,F2为左、右焦点,若|PF1|+|PF2|=10,则$\overrightarrow{P{F}_{1}}$$•\overrightarrow{P{F}_{2}}$=18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某产品的广告费用x万元与销售额y万元的统计数据如表:
广告费用x2345
销售额y26394954
根据上表可得回归方程$\widehaty=9.4x+a$,据此模型预测,广告费用为6万元时的销售额为(  )万元.
A.65.5B.66.6C.67.7D.72

查看答案和解析>>

同步练习册答案