3£®Ä³ÖÐѧΪÁ˽â¸ßÖÐÈëѧÐÂÉúµÄÉí¸ßÇé¿ö£¬´Ó¸ßÒ»Ä꼶ѧÉúÖа´·Ö²ã³éÑù¹²³éÈ¡ÁË50ÃûѧÉúµÄÉí¸ßÊý¾Ý£¬·Ö×éͳ¼ÆºóµÃµ½ÁËÕâ50ÃûѧÉúÉí¸ßµÄƵÊý·Ö²¼±í£º
 Éí¸ß£¨cm£©·Ö×é[145£¬155£©[155£¬165£©[165£¬175£©[175£¬185]
 ÄÐÉúƵÊý 1 5 12 4
 Å®ÉúƵÊý 7 15 4 2
£¨¢ñ£©ÔÚ´ðÌ⿨ÉÏ×÷³öÕâ50ÃûѧÉúÉí¸ßµÄƵÂÊ·Ö²¼Ö±·½Í¼£»
£¨¢ò£©¹À¼ÆÕâ50ÃûѧÉúÉí¸ßµÄ·½²î£¨Í¬Ò»×éÖеÄÊý¾ÝÓøÃ×éÇø¼äµÄÖеãÖµ×÷´ú±í£©£»
£¨¢ó£©ÏÖ´ÓÉí¸ßÔÚ[175£¬185]Õâ6ÃûѧÉúÖÐËæ»ú³éÈ¡3Ãû£¬ÇóÖÁÉٳ鵽1ÃûÅ®ÉúµÄ¸ÅÂÊ£®

·ÖÎö £¨¢ñ£©ÓÉÆµÂÊ·Ö²¼±íÄÜ×÷³öÕâ50ÃûѧÉúÉí¸ßµÄƵÂÊ·Ö²¼Ö±·½Í¼£®
£¨¢ò£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼ÄܹÀ¼ÆÕâ50ÃûѧÉúµÄƽ¾ùÉí¸ß£¬²¢ÄܹÀ¼ÆÕâ50ÃûѧÉúÉí¸ßµÄ·½²î£®
£¨¢ó£©¼ÇÉí¸ßÔÚ[175£¬185]µÄ4ÃûÄÐÉúΪa£¬b£¬c£¬d£¬2ÃûÅ®ÉúΪA£¬B£®ÀûÓÃÁоٷ¨ÄÜÇó³ö´ÓÕâ6ÃûѧÉúÖÐËæ»ú³éÈ¡3ÃûѧÉú£¬ÖÁÉٳ鵽1ÃûÅ®ÉúµÄ¸ÅÂÊ£®

½â´ð ½â£º£¨¢ñ£©Õâ50ÃûѧÉúÉí¸ßµÄƵÂÊ·Ö²¼Ö±·½Í¼ÈçÏÂͼËùʾ£º

£¨¢ò£©ÓÉÌâÒâ¿É¹À¼ÆÕâ50ÃûѧÉúµÄƽ¾ùÉí¸ßΪ$\overline x=\frac{150¡Á8+160¡Á20+170¡Á16+180¡Á6}{50}$=164£®
ËùÒÔ¹À¼ÆÕâ50ÃûѧÉúÉí¸ßµÄ·½²îΪs2=$\frac{{8{{£¨{150-164}£©}^2}+20{{£¨{160-164}£©}^2}+16{{£¨{170-164}£©}^2}+6{{£¨{180-164}£©}^2}}}{50}$=80£®
ËùÒÔ¹À¼ÆÕâ50ÃûѧÉúÉí¸ßµÄ·½²îΪ80£®
£¨¢ó£©¼ÇÉí¸ßÔÚ[175£¬185]µÄ4ÃûÄÐÉúΪa£¬b£¬c£¬d£¬2ÃûÅ®ÉúΪA£¬B£®
´ÓÕâ6ÃûѧÉúÖÐËæ»ú³éÈ¡3ÃûѧÉúµÄÇé¿öÓУº
{a£¬b£¬c}£¬{a£¬b£¬d}£¬{a£¬c£¬d}£¬{b£¬c£¬d}£¬{a£¬b£¬A}£¬{a£¬b£¬B}£¬
{a£¬c£¬A}£¬{a£¬c£¬B}£¬{a£¬d£¬A}£¬{a£¬d£¬B}£¬{b£¬c£¬A}£¬{b£¬c£¬B}£¬
{b£¬d£¬A}£¬{b£¬d£¬B}£¬{c£¬d£¬A}£¬{c£¬d£¬B}£¬{a£¬A£¬B}£¬{b£¬A£¬B}£¬
{c£¬A£¬B}£¬{d£¬A£¬B}¹²20¸ö»ù±¾Ê¼þ£®
ÆäÖÐÖÁÉٳ鵽1ÃûÅ®ÉúµÄÇé¿öÓУº
{a£¬b£¬A}£¬{a£¬b£¬B}£¬{a£¬c£¬A}£¬{a£¬c£¬B}£¬{a£¬d£¬A}£¬{a£¬d£¬B}£¬
{b£¬c£¬A}£¬{b£¬c£¬B}£¬{b£¬d£¬A}£¬{b£¬d£¬B}£¬{c£¬d£¬A}£¬{c£¬d£¬B}£¬
{a£¬A£¬B}£¬{b£¬A£¬B}£¬{c£¬A£¬B}£¬{d£¬A£¬B}¹²16¸ö»ù±¾Ê¼þ£®
ËùÒÔÖÁÉٳ鵽1ÃûÅ®ÉúµÄ¸ÅÂÊΪ$\frac{16}{20}=\frac{4}{5}$£®

µãÆÀ ±¾Ì⿼²éƵÂÊ·Ö²¼Ö±·½Í¼µÄÓ¦Ó㬸ÅÂʵÄÇ󷨣¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÁоٷ¨µÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Ò»¸öÈÝÁ¿Îª20µÄÊý¾ÝÑù±¾£¬·Ö×éºóµÄƵÊýÈç±í£º
·Ö×é[10£¬20£©[20£¬30£©[30£¬40£©[40£¬50£©[50£¬60£©[60£¬70£©
ƵÊý54324   2
ÔòÑù±¾Êý¾ÝÂäÔÚÇø¼ä[10£¬40£©µÄƵÂÊΪ£¨¡¡¡¡£©
A£®0.70B£®0.60C£®0.45D£®0.35

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Ò»Ì¨»úÆ÷ʹÓõÄʱ¼ä½Ï³¤£¬µ«»¹¿ÉÒÔʹÓã¬Ëü°´²»Í¬µÄתËÙÉú²ú³öÀ´µÄij»úеÁã¼þÓÐһЩ»áÓÐȱµã£¬Ã¿Ð¡Ê±Éú²úµÄÁã¼þÖÐÓÐȱµãµÄÁã¼þÊýËæ»úÆ÷ÔËתµÄËٶȶø±ä»¯£¬Èç±íΪ³éÑùÊý¾Ý£º
תËÙx£¨×ª/Ã룩1614128
ÿСʱÉú²úÓÐȱµãµÄÁã¼þÊýy£¨¼þ£©11985
£¨¢ñ£©Çë»­³öÉϱíÊý¾ÝµÄÉ¢µãͼ£»
£¨¢ò£©¸ù¾ÝÉ¢µãͼÅжϣ¬y=ax+bÓë$y=c\sqrt{x}+d$ÄÄÒ»¸öÊÊÒË×÷ΪÿСʱÉú²úµÄÁã¼þÖÐÓÐȱµãµÄÁã¼þÊýy¹ØÓÚתËÙxµÄ»Ø¹é·½³ÌÀàÐÍ £¨¸ø³öÅжϼ´¿É£¬²»±ØËµÃ÷ÀíÓÉ£©£¬¸ù¾ÝÅжϽá¹û¼°±íÖÐÊý¾Ý£¬½¨Á¢y¹ØÓÚxµÄ»Ø¹é·½³Ì£»
£¨¢ó£©Èôʵ¼ÊÉú²úÖУ¬ÔÊÐíÿСʱÉú²úµÄÁã¼þÖÐÓÐȱµãµÄÁã¼þÊý×î¶àΪ10¸ö£¬ÄÇô»úÆ÷µÄÔËתËÙ¶ÈÓ¦¿ØÖÆÔÚʲô·¶Î§ÄÚ£¿
£¨²Î¿¼¹«Ê½£º$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$£¬$\hat a=\overline y-\hat b\overline x$£®£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖª¶àÃæÌåABCDEFÖУ¬ËıßÐÎABCDΪƽÐÐËıßÐΣ¬AD¡ÍÆ½ÃæAEC£¬ÇÒ$AC=\sqrt{2}$£¬AE=EC=1£¬AD=2EF£¬EF¡ÎAD£®
£¨¢ñ£©ÇóÖ¤£ºÆ½ÃæFCE¡ÍÆ½ÃæADE£»
£¨¢ò£©ÈôAD=2£¬Çó¶àÃæÌåABCDEFµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªÁ½µãA£¨-1£¬1£©£¬B£¨3£¬5£©£¬µãCÔÚÇúÏßy=2x2ÉÏÔ˶¯£¬Ôò$\overrightarrow{AB}•\overrightarrow{AC}$µÄ×îСֵΪ£¨¡¡¡¡£©
A£®2B£®$\frac{1}{2}$C£®-2D£®$-\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÈôÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$£¨a£¾b£¾0£©µÄ¶ÌÖ᳤µÈÓÚ½¹¾à£¬ÔòÍÖÔ²µÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{{\sqrt{3}}}{3}$C£®$\frac{{\sqrt{2}}}{2}$D£®$\frac{{\sqrt{2}}}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Éè±äÁ¿x£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}x-2y¡Ü2\\ 3x+y¡Ü4\\ x-y¡Ý-4\end{array}\right.$£¬ÔòÄ¿±êº¯Êýz=y-2xµÄ×î´óÖµÊÇ14£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®É輯ºÏA1={a1}£¬A2={a2£¬a3}£¬A3={a4£¬a5£¬a6}£¬A4={a7£¬a8£¬a9£¬a10}£¬¡­£¬ÆäÖÐ{an}Ϊ¹«²î´óÓÚ0µÄµÈ²îÊýÁУ¬ÈôA2={3£¬5}£¬Ôò199ÊôÓÚ£¨¡¡¡¡£©
A£®A12B£®A13C£®A14D£®A15

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®²»µÈʽ×é$\left\{{\begin{array}{l}{x-2¡Ü0}\\{y-1¡Ü0}\\{x+2y-2¡Ý0}\end{array}}\right.$±íʾµÄÆ½ÃæÇøÓòµÄÃæ»ýÊÇ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸