分析 利用配方法求出圆的标准方程可得圆心和半径,由直线l:x+ay-1=0经过圆C的圆心(2,1),求得a的值,可得点A的坐标,再利用直线和圆相切的性质求得|AB|的值.
解答 解:由圆C:x2+y2-4x-2y+1=0得,(x-2)2+(y-1)2 =4,
所以C(2,1)为圆心、半径为2,
由题意可得,直线l:x+ay-1=0经过圆C的圆心(2,1),
故有2+a-1=0,得a=-1,则点A(-4,-1),
即|AC|=$\sqrt{(2+4)^{2}+(1+1)^{2}}$=$\sqrt{40}$,
所以切线的长|AB|=$\sqrt{|AC{|}^{2}-{r}^{2}}$=$\sqrt{40-4}$=6,
故答案为:6.
点评 本题考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | -1或3 | D. | 1或-3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b-1 | B. | a>b+1 | C. | |a|>|b| | D. | ($\frac{1}{2}$)a>($\frac{1}{2}$)b |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com