精英家教网 > 高中数学 > 题目详情
16.在△ABC中,已知sin2A+sin2B=2sin2C,则∠C的取值范围是0<∠C≤60°.

分析 已知等式利用正弦定理化简,表示出c2,利用余弦定理表示出cosC,将表示出的c2代入,并利用基本不等式求出cosC的度数,进而确定出∠C的范围.

解答 解:∵△ABC中,sin2A+sin2B=2sin2C,
∴由正弦定理化简得:a2+b2=2c2,即c2=$\frac{{a}^{2}+{b}^{2}}{2}$,
∴由余弦定理得:cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{{a}^{2}+{b}^{2}}{4ab}$≥$\frac{2ab}{4ab}$=$\frac{1}{2}$,当且仅当a=b时取等号,
∵∠C为三角形内角,
∴0<∠C≤60°,
故答案为:0<∠C≤60°.

点评 此题考查了正弦、余弦定理,以及余弦函数的定义域与值域,熟练掌握定理是解本题的关键,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知i为虚数单位,则复数z=$\frac{i}{2+i}$的实部为$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在矩形ABCD中,$\overrightarrow{AB}$=(1,-3),$\overrightarrow{AC}=(k\;,\;-2)$,则实数k=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.i是虚数单位,$\overrightarrow{z}$表示复数z的共轭复数,若$\overrightarrow{z}=1+i$,则$\frac{\overrightarrow{z}}{i}+i•z$=(  )
A.-2B.2C.-2iD.2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{m}$=(2sinx,-1),$\overrightarrow{n}$=(sinx-$\sqrt{3}$cosx,-2),函数f(x)=($\overrightarrow{m}$-$\overrightarrow{n}$)•$\overrightarrow{m}$.
(Ⅰ)求f(x)在区间$[-\frac{π}{2},\frac{π}{2}]$上的零点;
(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,a=4,f(A)=2,△ABC的面积S=$\sqrt{3}$,求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\frac{1}{{4}^{x}+2}$,当x1+x2=1时,f(x1)+f(x2)=$\frac{1}{2}$,则f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-1}{n}$)=$\frac{n-1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若直线l过点(0,2),且经过两条直线2x-3y-3=0和x+y+2=0的交点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,过抛物线y2=2px(p>0)焦点F的直线l交抛物线于点A、B,交其准线于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为(  )
A.y2=3xB.y2=9xC.y2=$\frac{3}{2}$xD.y2=$\frac{9}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线C:y2=2px(p>0)过定点(1,1),点P是曲线C上的动点,过点P的圆M:(x-t)2+y2=1(t>1)的切线l1,l2分别交曲线C于另外两点A,B.
(Ⅰ)求曲线C的方程;
(Ⅱ)若t=$\sqrt{2}$,点P为原点,判断直线AB与圆的位置关系;
(Ⅲ)对任意的动点P,是否存在实数t,使得直线AB与圆相切?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案