精英家教网 > 高中数学 > 题目详情
11.设f(z)=$\overline{z}$,z1=3+4i,z2=-2-i则f(z1-z2)是5-5i.

分析 由题意可得:z1-z2=5+5i,再结合f(z)=$\overline{z}$,则可得答案.

解答 解:由题意可得:z1=3+4i,z2=-2-i,
∴z1-z2=3+4i-(-2-i)=5+5i.
又∵f(z)=$\overline{z}$,
∴f(z1-z2)=5-5i.
故答案为:5-5i.

点评 本题考查了复数代数形式的混合运算,考查了共轭复数的求法,解决此类问题的关键是熟练掌握复数的加减法运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若sin2α=$\frac{1}{4}$,$\frac{π}{4}$<α<$\frac{π}{2}$,则cosα-sinα的值(  )
A.$\frac{3}{4}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{3}{4}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求下列函数的导数:
(1)f(x)=x3cosx
(2)f(x)=$\frac{x^2}{x+1}$
(3)f(x)=ln(3x-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}为等差数列,{bn}为等比数列,且满足:a1001+a1015=π,b6•b9=2,则tan$\frac{{{a_1}+{a_{2015}}}}{{1+{b_7}{b_8}}}$=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ex(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.
(1)求a,b的值;
(2)若对任意实数m∈(0,+∞),不等式f(x)>4ex(x+1)-m(x2+2)-2x恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,且Tn=2Sn-2n,n∈N*
(1)求数列{an}的通项公式;
(2)若Tn+2n-λ•a${\;}_{n}^{2}$≤0对任意n∈N恒成立,则实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知x,y∈(0,+∞),当x2+y2=1时,有x$\sqrt{1-{y}^{2}}$+y$\sqrt{1-{x}^{2}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=(ax2+x-1)ex,a∈R.
(1)若a=1,求曲线f(x)在点(0,f(0))处的切线方程;
(2)若a<0,求f(x)的单调区间.
(3)若a=-1,函数f(x)的图象与函数g(x)=$\frac{1}{3}{x^3}+\frac{1}{2}{x^2}$+m的图象有3个不同的交点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案