分析 (1)利用三角函数中的恒等变换应用化简函数解析式可得f(x)=$\frac{1}{2}$cos(2ωx+2φ+$\frac{π}{6}$),令2ωx+2φ+$\frac{π}{6}$=0,可得函数的一个最大值点O的坐标,令2ωx+2φ+$\frac{π}{6}$=-$\frac{π}{2}$,可得函数的一个最大值点O的左相邻的对称点A的坐标,
令2ωx+2φ+$\frac{π}{6}$=$\frac{π}{2}$,可得函数的一个最大值点O的右相邻的对称点B的坐标,由|AB|2=2|OB|2,结合范围ω>0,解得$ω=\frac{π}{2}$.由$\frac{1}{2}$cos($\frac{2π}{3}$+2φ+$\frac{π}{6}$)=0,结合范围0<φ<$\frac{π}{2}$,可得φ=$\frac{π}{3}$,可得函数解析式,由x∈[0,2]时,可得πx+$\frac{5π}{6}$∈[$\frac{5π}{6}$,$\frac{17π}{6}$],利用余弦函数的图象可得单调递减区间.
(2)由(1)及配方法可得g(x)=$\frac{17}{64}$+m-$\frac{1}{4}$(sinπx+$\frac{1}{4}$)2,由题意,m=$\frac{1}{4}$(sinπx+$\frac{1}{4}$)2-$\frac{17}{64}$在x∈[$\frac{5}{6}$,$\frac{3}{2}$]时有解,利用正弦函数的有界性即可求解.
解答 (本小题满分12分)
解:(1)∵f(x)=$\sqrt{3}$cos2(ωx+φ)-cos(ωx+φ)•sin(ωx+φ+$\frac{π}{3}$)-$\frac{\sqrt{3}}{4}$
=$\frac{\sqrt{3}+\sqrt{3}cos(2ωx+2φ)}{2}$-$\frac{1}{4}$sin(2ωx+2φ)-$\frac{\sqrt{3}}{4}$-$\frac{\sqrt{3}}{4}$cos(2ωx+2φ)-$\frac{\sqrt{3}}{4}$
=$\frac{1}{2}$[$\frac{\sqrt{3}}{2}$cos(2ωx+2φ)-$\frac{1}{2}$sin(2ωx+2φ)]
=$\frac{1}{2}$cos(2ωx+2φ+$\frac{π}{6}$),
∴函数周期T=$\frac{2π}{2ω}$,
∵令2ωx+2φ+$\frac{π}{6}$=0,可得函数的一个最大值点O的坐标为:(-$\frac{\frac{π}{6}+2φ}{2ω}$,$\frac{1}{2}$),
令2ωx+2φ+$\frac{π}{6}$=-$\frac{π}{2}$,可得函数的一个最大值点O的左相邻的对称点A的坐标为:(-$\frac{\frac{2π}{3}+2φ}{2ω}$,0),
令2ωx+2φ+$\frac{π}{6}$=$\frac{π}{2}$,可得函数的一个最大值点O的右相邻的对称点B的坐标为:($\frac{\frac{π}{3}-2φ}{2ω}$,0),
∴由题意可得:|AB|2=2|OB|2,即得:($\frac{π}{2ω}$)2=2[($\frac{\frac{π}{3}-2φ}{2ω}$+$\frac{\frac{π}{6}+2φ}{2ω}$)2+(-$\frac{1}{2}$)2],解得ω2=$\frac{{π}^{2}}{4}$,
∵ω>0,解得:$ω=\frac{π}{2}$.
∴f(x)=$\frac{1}{2}$cos(πx+2φ+$\frac{π}{6}$),
∵($\frac{2}{3}$,0)是f(x)的一个对称中心,即:$\frac{1}{2}$cos($\frac{2π}{3}$+2φ+$\frac{π}{6}$)=0,
∴$\frac{2π}{3}$+2φ+$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z,解得:φ=$\frac{kπ}{2}$-$\frac{π}{6}$,k∈Z,
∴由0<φ<$\frac{π}{2}$,可得:φ=$\frac{π}{3}$.
∴f(x)=$\frac{1}{2}$cos(πx+$\frac{5π}{6}$),
∵x∈[0,2]时,πx+$\frac{5π}{6}$∈[$\frac{5π}{6}$,$\frac{17π}{6}$],
∴当利用余弦函数的图象可得,当πx+$\frac{5π}{6}$∈[$\frac{5π}{6}$π],πx+$\frac{5π}{6}$∈[2π,$\frac{17π}{6}$]时单调递减,
即函数f(x)的单调递减区间为:[0,$\frac{1}{6}$]∪[$\frac{5}{6}$,2].
(2)∵由(1)可得:f(x-$\frac{5}{6}$)=$\frac{1}{2}$cosπx,
f(x-$\frac{1}{3}$)=-$\frac{1}{2}$sinπx.
∴g(x)=f2(x-$\frac{5}{6}$)+$\frac{1}{4}$f(x-$\frac{1}{3}$)+m=$\frac{1}{4}$cos2πx-$\frac{1}{8}$sinπx+m=$\frac{17}{64}$+m-$\frac{1}{4}$(sinπx+$\frac{1}{4}$)2,
∵g(x)在x∈[$\frac{5}{6}$,$\frac{3}{2}$]时有零点,即方程:$\frac{17}{64}$+m-$\frac{1}{4}$(sinπx+$\frac{1}{4}$)2=0在x∈[$\frac{5}{6}$,$\frac{3}{2}$]时有解,
∴m=$\frac{1}{4}$(sinπx+$\frac{1}{4}$)2-$\frac{17}{64}$在x∈[$\frac{5}{6}$,$\frac{3}{2}$]时有解,
∵x∈[$\frac{5}{6}$,$\frac{3}{2}$],sinπx∈[-1,$\frac{1}{2}$],sinπx+$\frac{1}{4}$∈[-$\frac{3}{4}$,$\frac{3}{4}$],$\frac{1}{4}$(sinπx+$\frac{1}{4}$)2∈[0,$\frac{9}{64}$],
∴m∈[-$\frac{17}{64}$,-$\frac{1}{8}$].
点评 本题主要考查了三角函数中的恒等变换应用,正弦函数,余弦函数的图象和性质,二次函数的图象和性质,考查了数形结合思想和转化思想的应用,考查了配方法的应用,综合性强,计算量大,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}i$ | B. | $\frac{3}{2}$ | C. | $-\frac{3}{2}i$ | D. | $-\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com