精英家教网 > 高中数学 > 题目详情
16.复数$\frac{3i}{1-i}$(i是虚数单位)的虚部是(  )
A.$\frac{3}{2}i$B.$\frac{3}{2}$C.$-\frac{3}{2}i$D.$-\frac{3}{2}$

分析 直接利用复数的除法运算法则化简求解即可.

解答 解:复数$\frac{3i}{1-i}$=$\frac{3i(1+i)}{(1-i)(1+i)}$=$-\frac{3}{2}$$+\frac{3}{2}i$.
复数$\frac{3i}{1-i}$(i是虚数单位)的虚部是:$\frac{3}{2}$.
故选:B.

点评 本题考查复数的代数形式混合运算,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足an+1-an=2n,且a1=1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{{a}_{n}+1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在菱形ABCD中,∠A=60°,AB=$\sqrt{3}$,将△ABC沿BD折起到△PBD的位置,若平面PBD⊥平面CBD,则三棱锥P-BCD的外接球体积为$\frac{5\sqrt{5}}{6}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数f(x)=$\sqrt{3}$cos2(ωx+φ)-cos(ωx+φ)•sin(ωx+φ+$\frac{π}{3}$)-$\frac{\sqrt{3}}{4}$(ω>0,0<φ<$\frac{π}{2}$)同时满足下列两个条件:
①f(x)图象最值点与左右相邻的两个对称中心构成等腰直角三角形
②($\frac{2}{3}$,0)是f(x)的一个对称中心、
(1)当x∈[0,2]时,求函数f(x)的单调递减区间;
(2)令g(x)=f2(x-$\frac{5}{6}$)+$\frac{1}{4}$f(x-$\frac{1}{3}$)+m,若g(x)在x∈[$\frac{5}{6}$,$\frac{3}{2}$]时有零点,求此时m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.过抛物线y2=4x焦点作斜率为-2的直线交抛物线于A、B两点,则|AB|=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.抛物线y=x2的准线方程是(  )
A.$y=-\frac{1}{4}$B.$y=-\frac{1}{2}$C.$x=-\frac{1}{4}$D.$x=-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知:定义在R上的函数f(x),对于任意实数a,b满足f(a+b)=f(a)f(b),且f(1)≠0,当x>0时,f(x)>1.
(1)求f(0)的值;
(2)证明f(x)在(-∞,+∞)上是增函数;
(3)求不等式f(x2+x)<$\frac{1}{f(2x-4)}$的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知A={x|$\frac{1}{9}$<($\frac{1}{3}$)x<3},B={x|log2x>0},A∪B=(-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)={sin^2}ωx+2\sqrt{3}sinωx•cosωx-{cos^2}ωx+λ({λ∈R})$的图象关于直线$x=\frac{π}{3}$对称,其中ω,λ为常数且ω∈(0,2).
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图象过点$({\frac{π}{6},0})$,求函数f(x)在$x∈[{0,\frac{π}{2}}]$上的值域.

查看答案和解析>>

同步练习册答案