精英家教网 > 高中数学 > 题目详情
1.抛物线y=x2的准线方程是(  )
A.$y=-\frac{1}{4}$B.$y=-\frac{1}{2}$C.$x=-\frac{1}{4}$D.$x=-\frac{1}{2}$

分析 先根据抛物线的标准方程得到焦点在y轴上以及2p=1,再直接代入即可求出其准线方程.

解答 解:因为抛物线的标准方程为:x2=y,焦点在y轴上;
所以:2p=1,即p=$\frac{1}{2}$,
所以:$\frac{p}{2}$=$\frac{1}{4}$,
所以准线方程y=-$\frac{p}{2}$=-$\frac{1}{4}$.
故选:A

点评 本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.设f(x)=x2-2ax-a2-$\frac{3}{4}$,若对任意的x∈[0,1],均有|f(x)|≤1,则实数a的取值范围是-$\frac{1}{2}$≤a≤$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lnx-$\frac{1}{2}$ax+a-2,a∈R.
(1)求函数f(x)的单调区间;
(2)当a<0时,试判断g(x)=xf(x)+2的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={1,2},B={1,m,3},如果A∩B=A,那么实数m等于(  )
A.-1B.0C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.复数$\frac{3i}{1-i}$(i是虚数单位)的虚部是(  )
A.$\frac{3}{2}i$B.$\frac{3}{2}$C.$-\frac{3}{2}i$D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.抛物线y=2x2的焦点坐标是(  )
A.(0,$\frac{1}{8}$)B.($\frac{1}{4}$,0)C.(1,0)D.(0,$\frac{1}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{a}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$),$\overrightarrow{b}$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),$\overrightarrow{c}$=($\sqrt{3}$,-1),其中x∈R.
(Ⅰ)当$\overrightarrow{a}$⊥$\overrightarrow{b}$时,求x值的集合;  
(Ⅱ)求|$\overrightarrow{a}$-$\overrightarrow{c}$|的最大值及并给出对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合M={x|-1<x<4},N={x|-2<x<1},则M∩N=(  )
A.(-1,4)B.(-1,1)C.(-2,4)D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.f(x)是奇函数,对任意的实数x,y,有f(x+y)=f(x)+f(y),且当x<0时,f(x)>0,则f(x)在区间[a,b]上(  )
A.有最小值f(a)B.有最大值f(a)C.有最大值$f(\frac{a+b}{2})$D.有最小值$f(\frac{a+b}{2})$

查看答案和解析>>

同步练习册答案