精英家教网 > 高中数学 > 题目详情
14.函数f(x)=x2-|x-$\frac{1}{4}$|的零点的个数为3.

分析 方法1:由f(x)=0,得x2=|x-$\frac{1}{4}$|,转化为2个函数的交点个数问题进行求解即可.
方法2:直接由定义解方程f(x)=0即可.

解答 解:方法1:∵函数$f(x)={x^2}-|{x-\frac{1}{4}}|$,
∴由f(x)=0,得x2=|x-$\frac{1}{4}$|,
作出函数y=x2和y=|x-$\frac{1}{4}$|的图象如图
则两个函数有3个交点,即函数的零点个数为3个.
法2:当x≥$\frac{1}{4}$时,f(x)=x2-x+$\frac{1}{4}$=(x-$\frac{1}{2}$)2
由f(x)=x2-x+$\frac{1}{4}$=(x-$\frac{1}{2}$)2=0得x=$\frac{1}{2}$,
当x<$\frac{1}{4}$时,f(x)=x2+x-$\frac{1}{4}$=(x+$\frac{1}{2}$)2-$\frac{1}{2}$
由f(x)=(x+$\frac{1}{2}$)2-$\frac{1}{2}$=0得x+$\frac{1}{2}$=±$\sqrt{\frac{1}{2}}$=$±\frac{\sqrt{2}}{2}$,
则x=-$\frac{1}{2}$$±\frac{\sqrt{2}}{2}$,
即函数有3个零点,
故答案为:3.

点评 本题主要考查函数零点个数的判断,利用数形结合或定义法是解决本题的关键.考查学生的计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.函数f(x)=$\sqrt{3}$cos2(ωx+φ)-cos(ωx+φ)•sin(ωx+φ+$\frac{π}{3}$)-$\frac{\sqrt{3}}{4}$(ω>0,0<φ<$\frac{π}{2}$)同时满足下列两个条件:
①f(x)图象最值点与左右相邻的两个对称中心构成等腰直角三角形
②($\frac{2}{3}$,0)是f(x)的一个对称中心、
(1)当x∈[0,2]时,求函数f(x)的单调递减区间;
(2)令g(x)=f2(x-$\frac{5}{6}$)+$\frac{1}{4}$f(x-$\frac{1}{3}$)+m,若g(x)在x∈[$\frac{5}{6}$,$\frac{3}{2}$]时有零点,求此时m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知A={x|$\frac{1}{9}$<($\frac{1}{3}$)x<3},B={x|log2x>0},A∪B=(-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.关于命题p:A∩∅=∅,命题q:A∪∅=A,则下列说法正确的是(  )
A.(¬p)∨q为假B.(¬p)∧(¬q)为真C.(¬p)∨(¬q)为假D.(¬p)∧q为真

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将函数y=f(x)的图象沿x轴向左平移π个单位后,再将所得图象上各点的横坐标缩小为原来的一半,得到函数y=sinx的图象,那么y=f(x)的表达式为(  )
A.y=sin2xB.y=-sin2xC.$y=-cos\frac{x}{2}$D.$y=-sin\frac{x}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知α∈(0,π)且$cos({\frac{π}{4}+α})=\frac{3}{5}$,则cosα的值为(  )
A.$\frac{{\sqrt{2}}}{10}$B.$-\frac{{\sqrt{2}}}{10}$C.$\frac{{7\sqrt{2}}}{10}$D.$-\frac{{7\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)={sin^2}ωx+2\sqrt{3}sinωx•cosωx-{cos^2}ωx+λ({λ∈R})$的图象关于直线$x=\frac{π}{3}$对称,其中ω,λ为常数且ω∈(0,2).
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图象过点$({\frac{π}{6},0})$,求函数f(x)在$x∈[{0,\frac{π}{2}}]$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱锥P-ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AB=1,BC=2,点E为BC的中点.
(Ⅰ)证明:PE⊥ED;
(Ⅱ) 在PD上找一点M,使得EM∥平面PAB,请确定M点的位置,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列式子中表示正确的是(  )
A.2+cosx=4B.$\sqrt{10}$>πC.sinx•cosx=sin2xD.sin75°>cos14°

查看答案和解析>>

同步练习册答案