精英家教网 > 高中数学 > 题目详情
函数y=(
1
2
|x|+2的值域是
 
考点:指数型复合函数的性质及应用
专题:函数的性质及应用
分析:设t=|x|+2,根据指数函数的单调性即可求出函数的值域.
解答: 解:设t=|x|+2,则t≥2,
∵y=(
1
2
t单调递减,
∴y=(
1
2
t∈(0,
1
4
]

即函数的值域为(0,
1
4
]

故答案为:(0,
1
4
]
点评:本题主要考查函数值域的计算,利用换元法结合指数函数的单调性是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

己知函数f(x)=lnx-ex+a
(I)若x=1是,f(x)的极值点,讨论f(x)的单调性
(Ⅱ)当a≥-2时,证明:f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下四个命题:
①将一枚硬币抛掷两次,设事件A:“两次都出现正面”,事件B:“两次都出现反面”,则事件A与B是对立事件;
②在命题①中,事件A与B是互斥事件;
③在10件产品中有3件是次品,从中任取3件.事件A:“所取3件中最多有2件次品”,事件B:“所取3件中至少有2件次品”,则事件A与B是互斥事件;
④若事件A、B满足P(A)+P(B)=1,则A、B是对立事件.
则以上命题中假命题是
 
(写出所有假命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}是递增数列,Sn是{an}的前n项和.若a1,a3是方程x2-10x+9=0的两个根,则S6=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数z=1-i(其中i是虚数单位),则
2
z
+z2
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(
x
+1)=x+
x
,则函数f(x)的解析式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ax3+3x2+2,若f(x)在x=1处的切线与直线x+3y+3=0垂直,则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于平面α,β,γ和直线a,b,m,n,下列命题中真命题是(  )
A、若a⊥m,a⊥n,m?α,n?α,则a⊥α
B、若α∥β,α∩γ=a,β∩γ=b,则a∥b
C、若a∥b,b?α,则a∥α
D、若a?β,b?β,a∥α,b∥α,则β∥α.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是各项均为正数的等比数列,且a1=1,又a2+1,S3-4,a3-1成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列(an+log2an+1)的前n项和.

查看答案和解析>>

同步练习册答案