精英家教网 > 高中数学 > 题目详情
11.已知向量$\overrightarrow{AB}$与向量$\overrightarrow{AC}$的夹角为$θ,|{\overrightarrow{AB}}|=3,|{\overrightarrow{AC}}|=2$,设向量$\overrightarrow{AP}=\frac{7}{12}\overrightarrow{AB}+\overrightarrow{AC}$,若$\overrightarrow{AP}⊥\overrightarrow{BC}$,则θ的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 首先利用向量垂直与向量线性运算化简($\frac{7}{12}$$\overrightarrow{AB}$+$\overrightarrow{AC}$)•($\overrightarrow{AC}$-$\overrightarrow{AB}$)=0,从而得出$\overrightarrow{AC}$•$\overrightarrow{AB}$=-3;再利用向量的数量积运算公式直接求出θ的值.

解答 解:∵$\$$\overrightarrow{AP}⊥\overrightarrow{BC}$  
∴$;\overrightarrow{AP}•\overrightarrow{BC}=0$$\overrightarrow{AP}•\overrightarrow{BC}=0$,即($\frac{7}{12}$$\overrightarrow{AB}$+$\overrightarrow{AC}$)•($\overrightarrow{AC}$-$\overrightarrow{AB}$)=0;
化简后得:$\overrightarrow{AC}$•$\overrightarrow{AB}$=-3;
$\overrightarrow{AC}$•$\overrightarrow{AB}$=|$\overrightarrow{AC}$|•|$\overrightarrow{BC}$|•cosθ=2×3×cosθ=-3;
∴cosθ=-$\frac{1}{2}$;
∵0≤θ≤π⇒θ=$\frac{2π}{3}$;
故选:C

点评 本题主要考查了平面向量数量积的运算以及向量基本线性运算,属常规题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\frac{1}{2}$x2-2ax-aln(2x)在(1,2)上单调递减,则a的取值范围是[$\frac{4}{5}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④27,54,81,128,135,162,189,216,243,270;
关于上述样本的下列结论中,可能为系统抽样的是①③;可能为分层抽样的是①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若圆台上底面半径为5cm,下底面半径为10cm,母线AB(点A在下底面圆周上,点B在上底面圆周上)长为20cm,从AB中点拉一根绳子绕圆台侧面转到A,则绳子最短的长度50cm.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2-c2=3b,且sinAcosC=2cosAsinC,则b=9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知是一几何体的直观图和三视图如图.
(1)若F为PD的中点,求证:AF⊥面PCD;
(2)求此几何体BEC-APD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,若$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\overrightarrow{BA}$•$\overrightarrow{BC}$=1.
(1)求证:∠A=∠B;
(2)求边长c的值;
(3)若|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=6,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图,函数y=x2图象下方的点构成的阴影部分面积$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点A,B的坐标分别是$(-\frac{1}{2},0)$,$(\frac{1}{2},0)$,直线AM,BM相交于点M,且直线AM的斜率与直线BM的斜率的差是-1.
(1)过点M的轨迹C的方程;
(2)过原点作两条互相垂直的直线l1、l2分别交曲线C于点A,C和B,D,求四边形ABCD面积的最小值.

查看答案和解析>>

同步练习册答案