精英家教网 > 高中数学 > 题目详情
16.已知是一几何体的直观图和三视图如图.
(1)若F为PD的中点,求证:AF⊥面PCD;
(2)求此几何体BEC-APD的体积.

分析 (1)证明PD⊥AF,CD⊥DA,CD⊥PA,即可证明CD⊥面ADP,推出CD⊥AF.证明AF⊥面PCD.  
(2)几何体的体积转化为两个三棱锥的体积,求解即可.

解答 解:(1)由几何体的三视图可知,底面ABCD是边长为4的正方形,PA⊥面ABCD,
∵PA=AD,F为PD的中点,∴PD⊥AF,又∵CD⊥DA,CD⊥PA,PA∩DA=A,
∴CD⊥面ADP,∴CD⊥AF.又CD∩DP=D,∴AF⊥面PCD.  
   
(2)易知PA⊥面ABCD,CB⊥面ABEP,故此几何体的体积为$V={V_{P-ACD}}+{V_{C-ABEP}}=\frac{1}{3}{S_{ACD}}×AP+\frac{1}{3}{S_{ABEP}}×CB$=$\frac{1}{3}×8×4+\frac{1}{3}×12×4=\frac{80}{3}$.

点评 本题考查几何体的体积的求法,直线与平面垂直以及平行的判定定理的应用,考查空间想象能力以及逻辑推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.A,B,C为空间三点,经过这三点的平面有1或无数个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=sin2x的图象经过怎样的平移变换得到函数y=sin($\frac{π}{3}-2x$)的图象(  )
A.向左平移$\frac{2π}{3}$个单位长度B.向左平移$\frac{π}{3}$个单位长度
C.向右平移$\frac{π}{6}$个单位长度D.向右平移$\frac{π}{3}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给出下列说法:
①如果直线l与平面α不垂直,那么在α内不存在与l垂直的直线;
②过直线外一点有且只有一个平面与已知直线垂直;
③与一个平面的垂线垂直的直线和这个平面平行;
④过平面外一点和这个平面垂直的直线有且只有一条.
其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow{AB}$与向量$\overrightarrow{AC}$的夹角为$θ,|{\overrightarrow{AB}}|=3,|{\overrightarrow{AC}}|=2$,设向量$\overrightarrow{AP}=\frac{7}{12}\overrightarrow{AB}+\overrightarrow{AC}$,若$\overrightarrow{AP}⊥\overrightarrow{BC}$,则θ的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知a=e-2,b=em,且a•b=1,则m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数$f(x)=\frac{1}{{{3^x}-1}}+a$(x≠0),则“f(-1)=-1”是“函数f(x)为奇函数”的充要条件(用“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.复数$\frac{5}{i-2}$=(  )
A.i-2B.i+2C.-2-iD.2-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知偶函数f(x)在R上的任一取值都有导数,f′(1)=-2,f(x-2)=f(x+2),则曲线y=f(x)在x=4k-5(k∈Z)处的切线的斜率为-2.

查看答案和解析>>

同步练习册答案