已知函数f(x)=aln x=
(a为常数
).
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线x+2y-5=0垂直,求a的值;
(2)求函数f(x)的单调区间;
(3)当x≥1时,f(x)≤2x-3恒成立,求a的取值范围.
解 (1)函数f(x)的定义域为{x|x>0},f′(x)=
.
又曲线y=f(x)在
点(1,f(1))处的切线与直线x+2y-5=0垂直,
所以f′(1)=a+1=2,即a=1.(4分)
(2)由f′(x)=
(x>0),
当a≥0时,
f′(x)>0恒成立,所以f(x)的单调增区间为(0,+∞).
当a<0时,
由f′(x)>0,得0<x<-
,
所以f(x)的单调增区间为
;
由f′(x)<0,得x>-
,
所以f(x)的单调减区间为![]()
(3)设g(x)=aln x-
-2x+3,x∈[1,+∞),
令h(x)=-2x2+ax+1,考虑到h(0)=1>0,
当a≤1时,
h(x)=-
2x2+ax+1的对称轴x=
<1,
h(x)在[1,+∞)上是减函数,h(x)≤h(1)=a-1≤0,
所以g′(x)≤0,g(x)在[1,+∞)上是减函数,
所以g(x)≤
g(1)=0,即f(x)≤2x2-3恒成立.
当a>1时,
令h(x)=-2x2+ax+1=0,
当x∈[1,x1)时,h(x)>0,即g′(x)>0,
g(x)在[1,x1)上是增函数;
当x∈(x1,+∞)时,h(x)<0,即g′(x)<0,
g(x)在(x1,+∞)上是减函数.
所以0=g(1)<g(x1),即f(x1)>2x1-3,不满足题意.
综上,a的取值范围为a≤1.(16分)
科目:高中数学 来源: 题型:
如图,Ox、Oy是平面内相交成120°的两条数轴,e1,e2分别是与x轴、y轴正方向同向的单位向量,若向量
=xe1+ye2,则将有序实数对(x,y)叫做向量
在坐标系xOy中的坐标.
(1)若
=3e1+2e2,则|
|=________;
(2)在坐标系xOy中,以原点为圆心的单位圆的方程为________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
已知
椭圆C:
(a>b>0)上任一点P到两个焦点的距离的和为2
,P与椭圆长轴两顶点连线的斜率之积为-
.设直线l过椭圆C的右焦点F,交椭圆C于两点A(x1,y1),B(x2,y2).
(1)若
(O为坐标原点),求|y1-y2|的值;
(2)当直线l与两坐标轴都不垂直时,在x轴上是否总存在点Q,使得直线QA,QB的倾斜角互为补角?若存在,求出点Q坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)=-x3+x2,g(x)=aln x,a∈R.
(1)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范围;
(2)设F(x)=
若P是曲线y=F(x)上异于原点O的任意一点,在曲线y=F(x)上总存在另一点Q,使得△POQ中的∠POQ为钝角,且PQ的中点在y轴上,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)=
,若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围为( )
A.(
) B.(
) C.(
,12) D.(6,l2)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com