精英家教网 > 高中数学 > 题目详情
19.已知向量$\overrightarrow{OA}$,$\overrightarrow{OB}$垂直,且|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=24,若t∈[0,1],则|t$\overrightarrow{AB}$-$\overrightarrow{AO}$|+|$\frac{5}{12}$$\overrightarrow{BO}$-(1-t)$\overrightarrow{BA}$|的最小值为(  )
A.2$\sqrt{193}$B.26C.17$\sqrt{2}$D.24

分析 由题意,在OB上取$\overrightarrow{BD}=\frac{5}{12}\overrightarrow{BO}$,在AB上取动点C,使$\overrightarrow{AC}=t\overrightarrow{AB}$(0≤t≤1),则|t$\overrightarrow{AB}$-$\overrightarrow{AO}$|+|$\frac{5}{12}$$\overrightarrow{BO}$-(1-t)$\overrightarrow{BA}$|=$|\overrightarrow{AC}-\overrightarrow{AO}|+|\overrightarrow{BD}-\overrightarrow{BC}|$=$|\overrightarrow{CO}|+|\overrightarrow{CD}|$,则|t$\overrightarrow{AB}$-$\overrightarrow{AO}$|+|$\frac{5}{12}$$\overrightarrow{BO}$-(1-t)$\overrightarrow{BA}$|的最小值可求.

解答 解:如图,在Rt△AOB中,已知∠AOB=90°,OA=OB=24
在OB上取点D,使得$BD=\frac{5}{12}BO=10$.
在AB上有一动点C,设$\overrightarrow{AC}=t\overrightarrow{AB}$(0≤t≤1),
则|t$\overrightarrow{AB}$-$\overrightarrow{AO}$|+|$\frac{5}{12}$$\overrightarrow{BO}$-(1-t)$\overrightarrow{BA}$|=$|\overrightarrow{AC}-\overrightarrow{AO}|+|\overrightarrow{BD}-\overrightarrow{BC}|$
=$|\overrightarrow{CO}|+|\overrightarrow{CD}|$.
∴$(|\overrightarrow{CO}|+|\overrightarrow{CD}|)_{min}=\sqrt{B{D}^{2}+B{O}^{2}}$=$\sqrt{2{4}^{2}+1{0}^{2}}=26$.
故选:B.

点评 本题考查平面向量的数量积运算,考查了数学转化思想方法,训练了灵活解决问题和处理问题的能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.不等式$\frac{1}{x}$-1≤0的解集是{x|x<0或x≥1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,三棱柱ABC-A1B1C1的各条棱长都是$\sqrt{2}$,且顶点A1在底面ABC上的射影O为△ABC的中心,则三棱锥A1-ABC的体积为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.作出f(x)=2sin($\frac{x}{2}+\frac{π}{3}$)的图象,并指出振幅、周期、初相、最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.数列{an}是单调递增数列,且通项公式为an=|3n+$\frac{a}{{3}^{n}}$|,则实数a的取值范围是(  )
A.(-3,27)B.(-81,9)C.(-27,27)D.(-3,9)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}是公差不为0的等差数列,其前n项的和为Sn,若a${\;}_{2}^{2}$+a${\;}_{3}^{2}$=a${\;}_{4}^{2}$+a${\;}_{5}^{2}$,S7=7,求等差数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设向量$\overrightarrow{AB}$=(3,4),$\overrightarrow{BC}$=(-2,-1),则cos∠BAC等于$\frac{3\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.袋中装分别标有数字1,2,3,4,5的5个形状相同的小球.
(1)从袋中每次任取一个球,每次取出后不放回,连续取两次,求两个小球所标数字之和为3的倍数;
(2)从袋中有放回的取出2个小球,记第一次取出的小球所标数字为x,第二次为y,求满足|x-y|>2或x+y>7的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,求使$\overrightarrow{a}$+k$\overrightarrow{b}$与k$\overrightarrow{a}$+$\overrightarrow{b}$的夹角为锐角的实数k的取值范围.

查看答案和解析>>

同步练习册答案