分析 由已知向量的坐标求出$\overrightarrow{AC}$的坐标,再求出|$\overrightarrow{AB}$|、|$\overrightarrow{AC}$|及$\overrightarrow{AB}•\overrightarrow{AC}$,代入数量积求夹角公式得答案.
解答 解:由$\overrightarrow{AB}$=(3,4),$\overrightarrow{BC}$=(-2,-1),得
$\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{BC}=(3,4)+(-2,-1)=(1,3)$,
∴$|\overrightarrow{AB}|=\sqrt{{3}^{2}+{4}^{2}}=5$,$|\overrightarrow{AC}|=\sqrt{{1}^{2}+{3}^{2}}=\sqrt{10}$,$\overrightarrow{AB}•\overrightarrow{AC}=3×1+4×3=15$,
∴cos∠BAC=$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{|\overrightarrow{AB}||\overrightarrow{AC}|}=\frac{15}{5×\sqrt{10}}=\frac{3\sqrt{10}}{10}$.
故答案为:$\frac{3\sqrt{10}}{10}$.
点评 本题考查平面向量的数量积运算,训练了由数量积求夹角公式,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | {x|2015<x≤2016} | B. | {x|2015<x<2016} | C. | (2015,2017) | D. | {x|x<2017} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{193}$ | B. | 26 | C. | 17$\sqrt{2}$ | D. | 24 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2x-y+1=0 | B. | 2x-y-1=0 | C. | 2x+y+1=0 | D. | 2x+y-1=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com