精英家教网 > 高中数学 > 题目详情

【题目】已知函数,函数.

1)若函数最小值为,求实数的值;

2)当时,不等式的解集为,求实数的取值范围.

【答案】1;(2

【解析】

1)换元,可得出,可得出关于的二次函数在区间上的最小值为,然后对该二次函数图象的对称轴与区间的位置关系进行分类讨论,可求出该函数的最小值,可解出实数的值;

2)由题意得出不等式在区间上无解,可得出对任意的恒成立,构造函数,求出该函数在区间上的最小值,即可求出实数的取值范围.

1)令,因为,所以.设,则,化简得

,即时,有,解得

,即时,有,解得(舍去).

因此,实数的值为

2)不等式可化为,即

因为当时,不等式的解集为

所以当时,不等式的解集为

则不等式对任意的恒成立,

则函数在区间上单调递增,在区间上单调递减,,所以,从而

因此,实数的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线 ,则下列说法正确的是( )

A. 上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线

B. 上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线

C. 把曲线向右平移个单位长度,再把得到的曲线上各点横坐标缩短到原来的,纵坐标不变,得到曲线

D. 把曲线向右平移个单位长度,再把得到的曲线上各点横坐标缩短到原来的,纵坐标不变,得到曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)判断的单调性,并说明理由;

2)判断的奇偶性,并用定义证明;

3)若不等式对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“荆、荆、襄、宜七校联考”正在如期开展,组委会为了解各所学校学生的学情,欲从四地选取200人作样本开展调研.若来自荆州地区的考生有1000人,荆门地区的考生有2000人,襄阳地区的考生有3000人,宜昌地区的考生有2000人.为保证调研结果相对准确,下列判断正确的有(  )

①用分层抽样的方法分别抽取荆州地区学生25人、荆门地区学生50人、襄阳地区学生75人、宜昌地区学生50人;

②可采用简单随机抽样的方法从所有考生中选出200人开展调研;

③宜昌地区学生小刘被选中的概率为

④襄阳地区学生小张被选中的概率为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快餐代卖店代售多种类型的快餐,深受广大消费者喜爱.其中,种类型的快餐每份进价为元,并以每份元的价格销售.如果当天20:00之前卖不完,剩余的该种快餐每份以元的价格作特价处理,且全部售完.

(1)若该代卖店每天定制种类型快餐,求种类型快餐当天的利润(单位:元)关于当天需求量(单位:份,)的函数解析式;

(2)该代卖店记录了一个月天的种类型快餐日需求量(每天20:00之前销售数量)

日需求量

天数

(i)假设代卖店在这一个月内每天定制种类型快餐,求这一个月种类型快餐的日利润(单位:元)的平均数(精确到);

(ii)若代卖店每天定制种类型快餐,以天记录的日需求量的频率作为日需求量发生的概率,求种类型快餐当天的利润不少于元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧棱垂直于底面, 分别为 的中点.

1求证:平面平面

2求证:在棱上存在一点,使得平面平面

3求三棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产(千部)手机,需另投入成本万元,且 ,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.

)求出2020年的利润(万元)关于年产量(千部)的函数关系式,(利润=销售额—成本);

2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为 .等 差数列中, ,且公差

求数列的通项公式

(Ⅱ)是否存在正整数,使得?.若存在,求出的最小值;若 不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】个编号为的不同小球全部放入个编号为个不同盒子中.求:

1)每个盒至少一个球,有多少种不同的放法?

2)恰好有一个空盒,有多少种不同的放法?

3)每盒放一个球,并且恰好有一个球的编号与盒子的编号相同,有多少种不同的放法?

4)把已知中个不同的小球换成四个完全相同的小球(无编号),其余条件不变,恰有一个空盒,有多少种不同的放法?

查看答案和解析>>

同步练习册答案