分析 由条件利用正弦定理求得cosB=sinB,cosC=sinC,可得B=C=$\frac{π}{4}$,可得A=$\frac{π}{2}$,可得△ABC中最长的边是a.
解答 解:在△ABC中,若$\frac{sinA}{a}$=$\frac{cosB}{b}$=$\frac{cosC}{c}$,
则由正弦定理 $\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$,
可得cosB=sinB,cosC=sinC,
∴B=C=$\frac{π}{4}$,
∴A=$\frac{π}{2}$,
∴△ABC中最长的边是a,
故答案为:a.
点评 本题主要考查正弦定理的应用,大角对大边,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{a}$+$\frac{1}{b}$=$\frac{1}{c}$ | B. | $\frac{2}{a}$+$\frac{1}{b}$=$\frac{3}{c}$ | C. | $\frac{2}{a}$+$\frac{2}{b}$=$\frac{3}{c}$ | D. | $\frac{1}{a}$+$\frac{2}{b}$=$\frac{2}{c}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | $\frac{9}{4}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 圆 | B. | 椭圆 | C. | 双曲线 | D. | 抛物线 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com