精英家教网 > 高中数学 > 题目详情
若直线,则的关系是__________.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在多面体中,四边形是正方形,平面,点的中点.

⑴求证:平面
⑵求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(文科做)(本题满分14分)如图,在长方体
ABCDA1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1EA1D;
(2)当EAB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1ECD的大小为.                      

(理科做)(本题满分14分)
如图,在直三棱柱ABCA1B1C1中,∠ACB = 90°,CB = 1,
CA =AA1 =M为侧棱CC1上一点,AMBA1
(Ⅰ)求证:AM⊥平面A1BC
(Ⅱ)求二面角BAMC的大小;
(Ⅲ)求点C到平面ABM的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本小题满分14分)如图,四棱锥E—ABCD中,ABCD是矩形,平面EAB平面ABCD,AE=EB=BC=2,F为CE上的点,
且BF平面ACE.
(1)求证:AEBE;
(2)求三棱锥D—AEC的体积;
(3)求二面角A—CD—E的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

. (本小题满分12分)
如图,四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,已知AB=,∠APB=∠ADB=60°

(Ⅰ)证明:平面PAC⊥平面PBD;
(Ⅱ)求PH与平面PAD所成的角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,三棱柱的底面是边长为2的正三角形,且平面是侧棱的中点,直线与侧面所成的角为45°.

(Ⅰ)求二面角的余弦值;
(Ⅱ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在直三棱柱中,
D,F,G分别为的中点,
求证:
求证:平面EFG//平面ABD;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.如图,四棱锥P-ABCD中,PA⊥底面ABCD,,AD=CD=1,∠=120°,=,∠=90°,M是线段PD上的一点(不包括端点).

(1)求证:BC⊥平面PAC;
(2)求异面直线AC与PD所成的角的余弦值
(3)试确定点M的位置,使直线MA与平面PCD所成角的正弦值为

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间三条射线PA,PB,PC满足∠APC=∠APB=60°,∠BPC=90°,则二面角B-PA-C 的度数                                                                             
A.等于90°B.是小于120°的钝角
C.是大于等于120°小于等于135°的钝角D.是大于135°小于等于150°的钝角

查看答案和解析>>

同步练习册答案