精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)的定义域是[1,5],则f(2x-1)的定义域是[1,3].

分析 由2x-1在已知函数定义域内求得x的范围得答案.

解答 解:∵函数f(x)的定义域是[1,5],
∴由1≤2x-1≤5,得1≤x≤3.
∴f(2x-1)的定义域是[1,3].
故答案为:[1,3].

点评 本题考查函数的定义域及其求法,关键是掌握该类问题的求解方法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.11月11日在某购物网站消费不超过10000元的2000名网购者中有女士1100名,男士900名.该网站为优化营销策略,根据性别采用分层抽样的方法从这2000名网购者中抽取200名进行分析得到下表(消费金额:元)
女士消费情况:
消费金额(0,2000)[2000,4000)[4000,6000)[6000,8000)[8000,10000]
人数1025      35     35x
男士消费情况:
消费金额(0,2000)[2000,4000)[4000,6000)[6000,8000)[8000,10000]
人数1530      25y3
(Ⅰ)计算x,y的值,在抽出的200名且消费金额在[8000,10000](单位:元)的网购者中随机选出2名发放网购红包,求选出的两名网购者都是男士的概率;
(Ⅱ)若消费金额不低于6000元的网购者为“网购达人”,低于6000元的网购者为“非网购达人”,根据以上数据填写下面2×2列连表,并回答能否在犯错误率不超过0.05的前提下,认为“是否为网购达人与性别有关”?
女士男士总计
网购达人
非网购达人
总计
附:
P(K2≥k00.100.050.0250.010.005
k02.7063.8415.0246.6357.879
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)},n=a+b+c+d$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知F1,F2是椭圆$C:\frac{x^2}{8}+\frac{y^2}{4}=1$的两个焦点,在C上满足$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0的点P的个数为(  )
A.0B.2C.4D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.定义集合运算“*”:A×B={(x,y)|x∈A,y∈B},称为A,B两个集合的“卡氏积”.若A={x|x2-2|x|≤0,x∈N},b={1,2,3},则(a×b)∩(b×a)={(1,1),(1,2),(2,1),(2,2)}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,I是全集,A,B是I的子集,则阴影部分表示的集合是A∩(CUB).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.定义实数运算x*y=$\left\{\begin{array}{l}{x,2x-1≥3y}\\{y,2x-1<3y}\end{array}\right.$,则|m-1|*m=|m-1|,则实数m的取值范围是(-∞,$\frac{1}{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某地区上年度电价为0.8元/kW•h,年用电量为akW•h,本年度计划将电价降到0.55 元/kW•h至0.75元/kW•h之间,而用户期待电价为0.4元/kW•h,下调电价后新增加的用电量与实际电价和用户期望电价的差成反比(比例系数为K),该地区的电力成本为0.3元/kW•h.(注:收益=实际用电量×(实际电价-成本价)),示例:若实际电价为0.6元/kW•h,则下调电价后新增加的用电量为$\frac{K}{0.6-0.4}$元/kW•h)
(1)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系;
(2)设K=0.2a,当电价最低为多少仍可保证电力部门的收益比上一年至少增长20%?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)满足f(-x)=f(x),且x>0时,f(x)=3x,则x<0时,f(x)等于(  )
A.3-xB.3xC.-3-xD.-3x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如果函数f(x)=x2+2(a-1)x+2的单调减区间是(-∞,4],则a=(  )
A.3B.-3C.5D.-5

查看答案和解析>>

同步练习册答案