精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=ln3x+ax+1(a∈R)的图象在点($\frac{1}{3}$,f($\frac{1}{3}$))处的切线的倾斜角是$\frac{3π}{4}$,则a=(  )
A.-4B.4C.3D.-3

分析 求出f(x)的导数,由导数的几何意义,可得在点($\frac{1}{3}$,f($\frac{1}{3}$))处的切线斜率,再由直线的斜率公式,可得斜率为1,解方程可得a.

解答 解:函数f(x)=ln3x+ax+1的导数为
f′(x)=$\frac{1}{x}$+a,
在点($\frac{1}{3}$,f($\frac{1}{3}$))处的切线斜率为a+3,
由切线的倾斜角为$\frac{3π}{4}$,可得切线的斜率为-1,
即为a+3=-1,解得a=-4.
故选:A.

点评 本题考查导数的运用:求切线的斜率,注意运用直线的斜率公式,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.将不超过30的正整数分成A、B、C三个集合,分别表示可被3整除的数、被3除余1的数、被3除余2的数.请分别用两种方法表示集合A、B、C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列命题为真命题的是(  )
A.函数$y=x+\frac{4}{x+1}$最小值为3B.函数$y=lgx+\frac{1}{lgx}$最小值为2
C.函数$y={2^x}+\frac{1}{{{2^x}+1}}$最小值为1D.函数$y={x^2}+\frac{1}{x^2}$最小值为2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)的定义域为R,f′(x)为函数f(x)的导函数,当x∈[0.+∞)时,2sinxcosx-f′(x)>0且?x∈R,f(-x)+f(x)+cos2x=1.则下列说法一定正确的是(  )
A.$\frac{1}{4}$-f(-$\frac{5π}{6}$)>$\frac{3}{4}$-f(-$\frac{2π}{3}$)B.$\frac{1}{4}$-f(-$\frac{5π}{6}$)>$\frac{3}{4}$-f(-$\frac{4π}{3}$)
C.$\frac{3}{4}$-f($\frac{π}{3}$)>$\frac{1}{2}$-f($\frac{3π}{4}$)D.$\frac{1}{2}$-f(-$\frac{3π}{4}$)>$\frac{3}{4}$-f($\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,点D为BC边上一点,且BD=1,E为AC的中点,$AE=\frac{3}{2},cosB=\frac{{2\sqrt{7}}}{7},∠ADB=\frac{2π}{3}$.
(1)求sin∠BAD;
(2)求AD及DC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列命题中,真命题的个数有(  )
①?x∈R,x2-x+$\frac{1}{4}$≥0;
②?x>0,lnx+$\frac{1}{lnx}$≤2;
③“a>b”是“ac2>bc2”的充要条件;
④f(x)=3x-3-x是奇函数.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$α∈(\frac{π}{2},π)$,且$sinα=\frac{4}{5}$,则tanα=(  )
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$\overrightarrow{a},\overrightarrow{b}$为同一平面内的两个不共线的向量,且$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(x,6),若|$\overrightarrow{a}-\overrightarrow{b}$|=2$\sqrt{5}$,向量$\overrightarrow{c}$=2$\overrightarrow{a}+\overrightarrow{b}$,则$\overrightarrow{c}$=(1,10).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设x,y,满足约束条件$\left\{\begin{array}{l}3x-y≤2\\ x-y≥0\\ x≥0,y≥0\end{array}\right.$,则目标函数-2x+y的最大值为0.

查看答案和解析>>

同步练习册答案