精英家教网 > 高中数学 > 题目详情
数列{an}的前n项和记为Sn,已知a1=1,Sn=
n
n+2
an+1
,(n=1,2,3,…)
(Ⅰ)求数列{Sn}的通项公式;
(Ⅱ)设Tn=S1+S2+S3+…+Sn,求Tn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件推导出
Sn+1
Sn
=
2(n+1)
n
,由此利用累积法能求出数列{Sn}的通项公式.
(Ⅱ)由Sn ═n•2n-1.Tn=S1+S2+S3+…+Sn,利用错位相减法能求出Tn=(n-1)•2n+1.
解答: 解:(Ⅰ)∵数列{an}的前n项和记为Sn,a1=1,
Sn=
n
n+2
an+1
=
n
n+2
(Sn+1-Sn)

Sn+1
Sn
=
2(n+1)
n

Sn=S1×
S2
S1
×
S3
S2
×…×
Sn
Sn-1

=1×
2(1+1)
1
×
2(2+1)
2
×…×
2n
n-1
=n•2n-1
(Ⅱ)∵Tn=S1+S2+S3+…+Sn
∴Tn=1×20+2×2+3×22+…+n×2n-1,①
2Tn=1×2+2×22+3×23+…+n×2n,②
①-②,得-Tn=1+2+22+…+2n-1-n×2n
=
1-2n
1-2
-n•2n

∴Tn=(n-1)•2n+1.
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

从参加高一年级某次模块考试中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.
(1)估计这次测试数学成绩的平均分;
(2)假设在[90,100]段的学生的数学成绩都不相同,且都在96分以上.现用简单随机抽样的方法,从94,95,96,97,98,99这6个数中任取2个数,求这两个数恰好是在[90,100]段的两个学生的数学成绩的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=(x-3)ex的单调递增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个内角A,B,C所对的边分别为a,b,c,向量
m
=(1,2),
n
=(cos2A,cos2
A
2
),且
m
n
=1.
(1)求角A的大小;
(2)若b+c=2a=2
3
,求证:△ABC为等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图P是△ABC所在平面外一点,PA=PB,CB⊥平面PAB,M是PC的中点,N是AB上的点,AN=3NB.求证:MN⊥AB.

查看答案和解析>>

科目:高中数学 来源: 题型:

有一杯糖水,重b克,其中含糖a克,现在向糖水中再加m克糖,此时糖水变得更甜了.(其中a,b,m∈R+).
(1)请从上面事例中提炼出一个不等式(要求:①使用题目中字母;②标明字母应满足条件)
(2)利用你学过的证明方法对提炼出的不等式进行证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

点A(1,1)在圆C:x2+y2-x+y+m=0的外部.
(1)求实数m的取值范围; 
(2)若m=-
1
4
,且过点A(1,1)的直线l被圆C截得的弦长为
2
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,已知a1=1,
2Sn
n
=an+1-
1
3
n2-n-
2
3
,n∈N*
(Ⅰ) 求数列{an}的通项公式;
(Ⅱ) 证明:对一切正整数n,有
1
a1
+
1
a2
+…+
1
an
7
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中点.
(1)求证:AB∥平面DEG;
(2)求异面直线BD与CF所成角的余弦值.

查看答案和解析>>

同步练习册答案