精英家教网 > 高中数学 > 题目详情
19.直线x=1,y=x,将圆x2+y2=4分成A,B,C,D四个区域,如图用五种不同的颜色给他们涂色,要求共边的两区域颜色互异,每个区域只涂一种颜色,共有多少种不同的涂色方法?

分析 由题意知给四部分涂色,至少要用两种颜色,故可分成三类涂色:第一类,用4种颜色涂色,第二类,用3种颜色涂色,第三类,用两种颜色涂色.分别写出三种不同情况下的结果,相加得到结果.

解答 解:由题意知给四部分涂色,至少要用两种颜色,故可分成三类涂色:
第一类,用4种颜色涂色,有A54种方法;
第二类,用3种颜色涂色,选3种颜色的方法有C53种;
在涂的过程中,选对顶的两部分涂同色,
另两部分涂异色有C21种选法;3种颜色涂上去有A33种涂法.
共C53•C21•A33种涂法;
第三类,用两种颜色涂色.选颜色有C52种选法;
对顶的两部分各涂一色有A22种涂法.共C52•A22种涂法.
∴共有涂色方法A54+C53•C21•A33+C52•A22=260种.

点评 本题以实际问题为载体,考查计数原理的运用,关键搞清是分类,还是分步.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.最近,国家统计局公布:2015年我国经济增速为6.9%,创近25年新低.在当前经济增速放缓的情况下,转变经济发展方式,淘汰落后产能,寻找新的经济增长点是当务之急.为此,经济改革专家组到基层调研,由一幅反映某厂6年来这种产品的总产量C与时间t(年)的函数关系图初步了解到:某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则他们看到的图是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,已知四边形ABCD是等腰梯形,E、F是腰AD、BC中点,M、N是EF两个三等分点,下底是上底2倍,若向量$\overrightarrow{AB}$=$\overrightarrow{a}$,向量$\overrightarrow{BC}$=$\overrightarrow{b}$,则向量$\overrightarrow{AM}$用$\overrightarrow{a}$、$\overrightarrow{b}$表示为(  )
A.$\frac{1}{2}$($\overrightarrow{a}+\overrightarrow{b}$)B.-$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$)C.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{2}\overrightarrow{b}$D.$\frac{1}{3}\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C为ρ=4cosθ+2sinθ.曲线C上的任意一点的直角坐标为(x,y),求x-y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系中,O是坐标原点,抛物线E的方程为y2=4x.M(1,-3),N(5,1),直线MN与抛物线相交于A,B两点,求∠AOB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知F是抛物线C:y2=2px(p>0)的焦点,点P(1,t)在抛物线C上,且|PF|=$\frac{3}{2}$.
(1)求p,t的值;
(2)设O为坐标原点,抛物线C 上是否存在点A(A与O不重合),使得过点O作线段OA的垂线与抛物线C交于点B,直线AB分别交x轴、y轴于点D,E,且满足S△OAB=$\frac{3}{2}{S_{△ODE}}$(S△OAB表示△OAB的面积,S△ODE表示△ODE的面积)?若存在,求出点A的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.证明下列命题:
(1)若实数a≥2,则$\sqrt{a+1}-\sqrt{a}<\sqrt{a-1}-\sqrt{a-2}$;
(2)若a,b为两个不相等的正数,且a+b=1,则$\frac{1}{a}+\frac{1}{b}>4$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若由一个2×2 列联表中的数据计算得K2的观测值k≈4.013,那么在犯错的概率不超过0.05的前提下,认为两个变量之间有关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=xex,g(x)=-(x+1)2+a,若?x1,x2∈R,使得f(x1)≤g(x2)成立,则实数a的取值范围是[-$\frac{1}{e}$,+∞).

查看答案和解析>>

同步练习册答案