精英家教网 > 高中数学 > 题目详情
10.如图,已知四边形ABCD是等腰梯形,E、F是腰AD、BC中点,M、N是EF两个三等分点,下底是上底2倍,若向量$\overrightarrow{AB}$=$\overrightarrow{a}$,向量$\overrightarrow{BC}$=$\overrightarrow{b}$,则向量$\overrightarrow{AM}$用$\overrightarrow{a}$、$\overrightarrow{b}$表示为(  )
A.$\frac{1}{2}$($\overrightarrow{a}+\overrightarrow{b}$)B.-$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$)C.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{2}\overrightarrow{b}$D.$\frac{1}{3}\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$

分析 利用平面向量的三角形法则得出$\overrightarrow{AM}$=$\overrightarrow{AB}+\overrightarrow{BF}+\overrightarrow{FM}$=$\overrightarrow{AB}+\frac{1}{2}\overrightarrow{BC}-\frac{2}{3}\overrightarrow{EF}$.

解答 解:$\overrightarrow{EF}$=$\frac{1}{2}$($\overrightarrow{AB}+\overrightarrow{DC}$)=$\frac{3}{4}$$\overrightarrow{AB}$=$\frac{3}{4}\overrightarrow{a}$,
∴$\overrightarrow{AM}$=$\overrightarrow{AB}+\overrightarrow{BF}+\overrightarrow{FM}$=$\overrightarrow{AB}+\frac{1}{2}\overrightarrow{BC}-\frac{2}{3}\overrightarrow{EF}$=$\overrightarrow{a}+\frac{1}{2}\overrightarrow{b}$-$\frac{1}{2}$$\overrightarrow{a}$=$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$.
故选A.

点评 本题考查了平面向量的几何运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知实数x,y满足$\left\{\begin{array}{l}{x-y+1≥0}\\{3x-y-3≤0}\\{y≥0}\end{array}\right.$,则z=3x+2y的最大值为(  )
A.2B.3C.12D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线l:y=k(x+2),曲线$Γ:\sqrt{1-{{(x-1)}^2}}-y=0$,则当k∈[-1,1],直线l与曲线Γ有两个交点的概率为(  )
A.$\frac{{\sqrt{2}}}{8}$B.$\frac{{\sqrt{2}}}{6}$C.$\frac{{\sqrt{2}}}{4}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.5人排成一排照相,其中甲乙必须相邻的排法种数有(  )
A.72B.60C.48D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=sin(2x-$\frac{π}{3}$).
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的最大值和最小值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={a1,a2,…an}中的元素都是正整数,且a1<a2<…<an,集合A具有性质M:对于任意的x,y∈A(x≠y),都有$|{x-y}|>\frac{xy}{25}$
(Ⅰ)判断集合{1,2,3,4}是否具有性质M
(Ⅱ)求证:$\frac{1}{a_1}-\frac{1}{a_n}≥\frac{n-1}{25}$
(Ⅲ)求集合A中元素个数的最大值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,底面ABCD是棱长为a正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC中点,AC与BD交于O点.
(1)求证:BC⊥平面PCD;
(2)求点C到平面BED的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.直线x=1,y=x,将圆x2+y2=4分成A,B,C,D四个区域,如图用五种不同的颜色给他们涂色,要求共边的两区域颜色互异,每个区域只涂一种颜色,共有多少种不同的涂色方法?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设含有8个元素的集合的全部子集数为S,其中由3个元素组成的子集数为T,则$\frac{T}{S}$的值为$\frac{7}{32}$.

查看答案和解析>>

同步练习册答案