精英家教网 > 高中数学 > 题目详情
15.已知集合A={a1,a2,…an}中的元素都是正整数,且a1<a2<…<an,集合A具有性质M:对于任意的x,y∈A(x≠y),都有$|{x-y}|>\frac{xy}{25}$
(Ⅰ)判断集合{1,2,3,4}是否具有性质M
(Ⅱ)求证:$\frac{1}{a_1}-\frac{1}{a_n}≥\frac{n-1}{25}$
(Ⅲ)求集合A中元素个数的最大值,并说明理由.

分析 (Ⅰ)利用性质对任意的x,y∈A,x,y∈A(x≠y),都有$|{x-y}|>\frac{xy}{25}$,代入可判断
(Ⅱ)依题意有:${|a}_{i}-{a}_{i+1}|≥\frac{{a}_{i}{a}_{i+1}}{25}$(i=1,2,3…n-1),又a1<a2<…<an,因此:${a}_{i+1}-{a}_{i}≥\frac{{a}_{i}{a}_{i+1}}{25}$(i=1,2,3…n-1),由此能够证明:$\frac{1}{a_1}-\frac{1}{a_n}≥\frac{n-1}{25}$.
(Ⅲ)由$\frac{1}{a_1}≥\frac{n-1}{25}$,a≥1可得由$1>\frac{n-1}{25}$,因此n<26,同理$\frac{1}{{a}_{i}}-\frac{1}{{a}_{n}}≥\frac{n-i}{25}$,可得,$\frac{1}{{a}_{i}}>\frac{n-i}{25}$.由此能够推导出集合A中元素个数的最大值.

解答 解:(I)由于|1-2|≥$\frac{1×2}{25}$,|1-3|≥$\frac{1×3}{25}$,|1-4|$≥\frac{1×4}{25}$,|2-3|≥$\frac{2×3}{25}$,|2-4|$≥\frac{2×4}{25}$,|3-4|$≥\frac{3×4}{25}$
∴集合{1,2,3,4}具有性质P;
(Ⅱ)依题意有:${|a}_{i}-{a}_{i+1}|≥\frac{{a}_{i}{a}_{i+1}}{25}$(i=1,2,3…n-1),又a1<a2<…<an
因此:${a}_{i+1}-{a}_{i}≥\frac{{a}_{i}{a}_{i+1}}{25}$(i=1,2,3…n-1)
可得:$\frac{1}{{a}_{i}}-\frac{1}{{a}_{n+i}}≥\frac{1}{25}$,(i=1,2,3…n-1)
所以有:$\frac{1}{{a}_{1}}-\frac{1}{{a}_{2}}+\frac{1}{{a}_{2}}-\frac{1}{{a}_{3}}+…+\frac{1}{{a}_{n-1}}-\frac{1}{{a}_{n}}≥$$\frac{n-1}{25}$,即$\frac{1}{a_1}-\frac{1}{a_n}≥\frac{n-1}{25}$.
得证;
(Ⅲ)由$\frac{1}{a_1}≥\frac{n-1}{25}$,a≥1,可得$1>\frac{n-1}{25}$,因此n<26,同理$\frac{1}{{a}_{i}}-\frac{1}{{a}_{n}}≥\frac{n-i}{25}$,可得,$\frac{1}{{a}_{i}}>\frac{n-i}{25}$.
又∵ai≥i,可得$\frac{1}{i}>\frac{n-i}{25}$,那么:25>i(n-i),(i=1,2,3…n-1)也均成立.
当n≥10时,取i=5,则i(n-i)=5(n-5)≥25,可知n<10.
又当n≤9时,$i(n-i)≤(\frac{i+n-i}{2})^{2}=\frac{{n}^{2}}{2}<25$,所以n≤9
因此集合A中元素个数的最大值为9.

点评 本题考查数列的性质的综合运用,解题时要认真审题,注意公式的合理运用,合理地进行等价转化和变形.属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在△ABC中,角A.B.C的对边分别为a,b,c,已知A=60°,a=2$\sqrt{3}$,b=2$\sqrt{2}$,则角B=(  )
A.45°B.30°C.90°D.45°或135°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若三个实数2,m,6成等差数列,则m的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某品牌汽车的4S店对最近60位采用分期付款的购车者人数进行统计,统计结果如下表所示:
付款方式分1期分2期分3期分4期
频数20a14b
已知分4期付款的频率为$\frac{1}{6}$,并且4S店销售一辆该品牌的汽车,顾客分1期付款其利润为1万元,分2期或3期付款其利润为2万元,分4期付款其利润为3万元,以频率作为概率.
(1)求事件A“购买该品牌汽车的3位顾客中,至多有1位分4期付款”的概率;
(2)用X表示销售一两该品牌汽车的利润,求X的分布列及数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,已知四边形ABCD是等腰梯形,E、F是腰AD、BC中点,M、N是EF两个三等分点,下底是上底2倍,若向量$\overrightarrow{AB}$=$\overrightarrow{a}$,向量$\overrightarrow{BC}$=$\overrightarrow{b}$,则向量$\overrightarrow{AM}$用$\overrightarrow{a}$、$\overrightarrow{b}$表示为(  )
A.$\frac{1}{2}$($\overrightarrow{a}+\overrightarrow{b}$)B.-$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$)C.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{2}\overrightarrow{b}$D.$\frac{1}{3}\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设P:方程$\frac{{x}^{2}}{3-a}$+$\frac{{y}^{2}}{1+a}$=1表示椭圆,Q:(a-2)x2+2(a-2)x-4<0对任意实数x恒成立,若P∧Q是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C为ρ=4cosθ+2sinθ.曲线C上的任意一点的直角坐标为(x,y),求x-y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知F是抛物线C:y2=2px(p>0)的焦点,点P(1,t)在抛物线C上,且|PF|=$\frac{3}{2}$.
(1)求p,t的值;
(2)设O为坐标原点,抛物线C 上是否存在点A(A与O不重合),使得过点O作线段OA的垂线与抛物线C交于点B,直线AB分别交x轴、y轴于点D,E,且满足S△OAB=$\frac{3}{2}{S_{△ODE}}$(S△OAB表示△OAB的面积,S△ODE表示△ODE的面积)?若存在,求出点A的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列命题,正确命题个数为(  )
①若tanA•tanB>1,则△ABC一定是钝角三角形;
②若sin2A=sin2B,则△ABC一定是等腰三角形;
③若cos(A-B)cos(B-C)cos(C-A)=1,则△ABC一定是等边三角形;
④在锐角三角形ABC中,一定有sinA>cosB.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案